I think because each element has its own number of protons and neutrons, giving it its own atomic number and mass (correct me if I’m wrong please)
Answer : The enthalpy of combustion per mole of
is -2815.8 kJ/mol
Explanation :
Enthalpy change : It is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
The equilibrium reaction follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(n_{(CO_2)}\times \Delta H^o_f_{(CO_2)})+(n_{(H_2O)}\times \Delta H^o_f_{(H_2O)})]-[(n_{(C_6H_{12}O_6)}\times \Delta H^o_f_{(C_6H_{12}O_6)})+(n_{(O_2)}\times \Delta H^o_f_{(O_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%28n_%7B%28CO_2%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%29%7D%29%2B%28n_%7B%28H_2O%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%29%7D%29%5D-%5B%28n_%7B%28C_6H_%7B12%7DO_6%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_6H_%7B12%7DO_6%29%7D%29%2B%28n_%7B%28O_2%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(6\times -393.5)+(6\times -285.8)]-[(1\times -1260)+(6\times 0)]=-2815.8kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%286%5Ctimes%20-393.5%29%2B%286%5Ctimes%20-285.8%29%5D-%5B%281%5Ctimes%20-1260%29%2B%286%5Ctimes%200%29%5D%3D-2815.8kJ%2Fmol)
Therefore, the enthalpy of combustion per mole of
is -2815.8 kJ/mol
3. A
4. B
5. A
6. E
7. A
8. C
9. A
10. B
Some of these were guesses but they were educated guesses. Best of luck. If some of them are wrong I am sorry. <span />
Answer : The correct option is, (A) 0.109 M 
Solution : Given,
Mass of
= 17 g
volume of solution = 974 ml
Molar mass of
= 159.609 g/mole
Molarity : It is defined as the number of moles of solute present in one liter of solution.
Formula used :
where,
w = mass of
(solute)
M = molar mass of
= volume of solution in liter
Now put all the given values in the above formula, we get the molarity of solution.
Therefore, the molarity of the solution is, 0.109 M