Answer:
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given
![T:R^3->R^2](https://tex.z-dn.net/?f=T%3AR%5E3-%3ER%5E2)
![T(e_1) = (1,2)](https://tex.z-dn.net/?f=T%28e_1%29%20%3D%20%281%2C2%29)
![T(e_2) = (-4,6)](https://tex.z-dn.net/?f=T%28e_2%29%20%3D%20%28-4%2C6%29)
![T(e_3) = (2,-6)](https://tex.z-dn.net/?f=T%28e_3%29%20%3D%20%282%2C-6%29)
Required
Find the standard matrix
The standard matrix (A) is given by
![Ax = T(x)](https://tex.z-dn.net/?f=Ax%20%3D%20T%28x%29)
Where
![T(x) = [T(e_1)\ T(e_2)\ T(e_3)]\left[\begin{array}{c}x_1&x_2&x_3\\-&&x_n\end{array}\right]](https://tex.z-dn.net/?f=T%28x%29%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%26x_2%26x_3%5C%5C-%26%26x_n%5Cend%7Barray%7D%5Cright%5D)
becomes
![Ax = [T(e_1)\ T(e_2)\ T(e_3)]\left[\begin{array}{c}x_1&x_2&x_3\\-&&x_n\end{array}\right]](https://tex.z-dn.net/?f=Ax%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%26x_2%26x_3%5C%5C-%26%26x_n%5Cend%7Barray%7D%5Cright%5D)
The x on both sides cancel out; and, we're left with:
![A = [T(e_1)\ T(e_2)\ T(e_3)]](https://tex.z-dn.net/?f=A%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D)
Recall that:
![T(e_1) = (1,2)](https://tex.z-dn.net/?f=T%28e_1%29%20%3D%20%281%2C2%29)
![T(e_2) = (-4,6)](https://tex.z-dn.net/?f=T%28e_2%29%20%3D%20%28-4%2C6%29)
![T(e_3) = (2,-6)](https://tex.z-dn.net/?f=T%28e_3%29%20%3D%20%282%2C-6%29)
In matrix:
is represented as: ![\left[\begin{array}{c}a\\b\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%5C%5Cb%5Cend%7Barray%7D%5Cright%5D)
So:
![T(e_1) = (1,2) = \left[\begin{array}{c}1\\2\end{array}\right]](https://tex.z-dn.net/?f=T%28e_1%29%20%3D%20%281%2C2%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
![T(e_2) = (-4,6)=\left[\begin{array}{c}-4\\6\end{array}\right]](https://tex.z-dn.net/?f=T%28e_2%29%20%3D%20%28-4%2C6%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
![T(e_3) = (2,-6)=\left[\begin{array}{c}2\\-6\end{array}\right]](https://tex.z-dn.net/?f=T%28e_3%29%20%3D%20%282%2C-6%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C-6%5Cend%7Barray%7D%5Cright%5D)
Substitute the above expressions in ![A = [T(e_1)\ T(e_2)\ T(e_3)]](https://tex.z-dn.net/?f=A%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D)
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
Hence, the standard of the matrix A is:
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
The image of p is (-1, 1)
Because the rule for 270 counterclockwise is (y,-x)
V1=(T1/T2)*V2
In this problem, since you are given no actual numbers, the only thing you can do is multiply V2 over to get V1 alone. Since you can't cancel anything out, you are left with the answer above.
Answer:
199
Step-by-step explanation:
2004 is 24 years after 1980. The polynomial remainder theorem tells you the remainder from division by x-24 will be the function value c(24). We can find the remainder/function value by evaluating the function rewritten to Horner form:
c(x) = ((0.006x -0.48)x +12.8)x +85
c(24) = ((0.006(24) -0.48)(24) +12.8)(24) +85 = (-.336(24) +12.8)(24) +85
= 4.736(24) +85 = 198.664
c(24) ≈ 199
The approximate number of countries attending the 2004 Olympics was 199.
Math Test Quiz Scores: 16, 20, 22, 25, 25, 20, 15, 18, 19, 20, 23, 17 Find the Range
777dan777 [17]
Answer:
The range is 10
Step-by-step explanation:
To find the range you need to find the lowest number in value, and subract it from the highest number in value.