Answer:
The probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Step-by-step explanation:
Let <em>X</em> = the number of miles Ford trucks can go on one tank of gas.
The random variable <em>X</em> is normally distributed with mean, <em>μ</em> = 350 miles and standard deviation, <em>σ</em> = 10 miles.
If the Ford truck runs out of gas before it has gone 325 miles it implies that the truck has traveled less than 325 miles.
Compute the value of P (X < 325) as follows:
Thus, the probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
x=
16
7−
177
=−0.394
x=
16
7+
177
=1.269Step-by-step explanation:
Answer:
the answer is -3
its just opposite to the normal when we check negative numbers.
Answer:35
Step-by-step explanation:
22+13=35