The AMOUNT of energy the ball has doesn't change. It's 294 joules in Darwin's hand, and it's still 294 joules when the ball hits the ground. It's all PE before he let's it go, and it steadily changes from PE to KE all the way down.
It BEGINS to turn into KE immediately, when Darwin lets go of the ball, and it starts to fall.
More and more PE turns into KE as the ball falls, all the way down.
When the ball hits the ground, it has no more PE left. All of its mechanical energy is then KE.
A ball kept on 3rd floor of a building.
A pendulum bob kept at 3m height
A stone thrown vertically upward.
A pressed spring.
A squashed spunge ball.
<span>According to the concept of punctuated equilibrium, </span>new species evolve suddenly over relatively short periods of time (a few hundred to a thousand years), followed by longer periods in which little genetic change occurs. Hope this helps. Have a nice day.
In kynematics you describe the motion of particles using vectors and their change in time. You define a position vector r for a particle, and then define velocity v and acceleration a as


In dynamics Newton's laws predict the acceleration for a given force. Knowing the acceleration, and the kynematical relations defines above, you can solve for the position as a function of time: r(t)