1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
14

A rock has a mass of 3.1 kg. What is its weight on earth

Physics
1 answer:
Masteriza [31]3 years ago
6 0

Answer:

W = 30.38 N

Explanation:

Given that,

Mass of a rock, m = 3.1 kg

We need to find the weight of the rock on the surface of Earth. Weight of an object is given by :

W = mg

g is the acceleration due to gravity, g = 9.8 m/s²

W = 3.1 kg × 9.8 m/s²

= 30.38 N

So, the weight of the rock on the Earth is 30.38 N.

You might be interested in
Earth has four motions in its movement through space, rotation, revolution, processional, and solar motion, which two are of any
Anna007 [38]

Answer:

rotation and revolution

Explanation:

out of the four motions the earth is subject to which are: rotation about its axis, revolution around  the Sun, processional motion (a slow conical movement ) of the axis, and the solar motion (this refers to the

movement of the whole solar system with space),  only two are of any

importance to meteorology as this two causes changes in weather and seasons. The first motion is rotation. Earth rotates on its axis

once every 24 hours. One-half of the Earth’s surface is

therefore facing the Sun at all times. The second motion of Earth is its revolution around  the Sun. The revolution around the Sun and the earth tilt on its axis are responsible for changes in seasons. The Earth

makes one complete revolution around the Sun in

approximately 365 1/4 days.

6 0
3 years ago
A student wants to determine the impulse delivered to the lab cart when it runs into the wall. The student measures the mass of
forsale [732]
Impulse = Force * times and also Impulse = change in momentum.

Given that the mass does not change, change if momentum = mass * (final velocity -  initial velocity)

Given that you know mass and initial velocity (which is the velicity before the cart hits the wall) you need the final velocity (which is the velocity after the cart hits the wall).

Answer: the velocity of the cart after it hits the wall.
6 0
2 years ago
A stationary rock on a hill has
Mekhanik [1.2K]

Answer: potential energy but no kinetic energy

Explanation:

Since the rock is stationary, velocity is zero, therefore no kinetic energy,but there's potential energy because the rock is at rest,

5 0
2 years ago
Read 2 more answers
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to grea
Alexxx [7]

Answer:

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

Explanation:

To answer this question, let's analyze the problem. Let's use conservation of energy

Starting point. Highest point

          Em₀ = U = m g h

Final point. To get off the ramp

          Em_f = K = ½ mv² + ½ I w²

notice that we include the kinetic energy of translation and rotation

         

energy is conserved

        Em₀ = Em_f

        mgh = ½ m v² +1/2 I w²

angular and linear velocity are related

         v = w r

         w = v / r

we substitute

          mg h = ½ v² (m + I / r²)

          v² = 2 gh   \frac{m}{m+ \frac{I}{r^2} }

          v² = 2gh    \frac{1}{1 + \frac{I}{m r^2} }

this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)

         v² = v₀² + 2 a L

where L is the length of the plane

         v² = 2 a L

         a = v² / 2L

we substitute

         a = g \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

let's use trigonometry

         sin θ = h / L

         

we substitute

         a = g sin θ   \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

the moment of inertia of each object is tabulated, let's find the acceleration of each object

a) Hollow cylinder

      I = m r²

we look for the acerleracion

      a₁ = g sin θ    \frac{1}{1 + \frac{mr^2 }{m r^2 } }1/1 + mr² / mr² =

      a₁ = g sin θ    ½

b) solid cylinder

       I = ½ m r²

       a₂ = g sin θ  \frac{1}{1 + \frac{1}{2}  \frac{mr^2}{mr^2} } = g sin θ   \frac{1}{1+ \frac{1}{2} }

       a₂ = g sin θ   ⅔

c) hollow sphere

     I = 2/3 m r²

     a₃ = g sin θ   \frac{1}{1 + \frac{2}{3} }

     a₃ = g sin θ \frac{3}{5}

d) solid sphere

     I = 2/5 m r²

     a₄ = g sin θ  \frac{1 }{1 + \frac{2}{5} }

     a₄ = g sin θ  \frac{5}{7}

We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)

a) a₁ = g sin θ ½ = g sin θ      \frac{105}{210}

b) a₂ = g sinθ ⅔ = g sin θ     \frac{140}{210}

c) a₃ = g sin θ \frac{3}{5}= g sin θ       \frac{126}{210}

d) a₄ = g sin θ \frac{5}{7} = g sin θ      \frac{150}{210}

the order of acceleration from lower to higher is

   

     a₁ <a₃ <a₂ <a₄

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

8 0
3 years ago
Atoms can join together to form ______ substance​
ELEN [110]

Answer:

Molecules

Explanation:

:)

7 0
2 years ago
Other questions:
  • When a car travels around a curve in the road , what supplies the centripetal force needed ?
    13·1 answer
  • Find the electric field at a point midway between two charges of +40.0 × 10−9 c and +60.0 × 10−9 c separated by a distance of 30
    9·1 answer
  • A car traveling with constant speed travels 150 km in 7200 s. What is the speed of the car?
    15·2 answers
  • What are atoms composed of
    12·2 answers
  • How is energy related to the change of state represented by the model?
    7·2 answers
  • If the child pulls with a force of 20 N for 12.0 m , and the handle of the wagon is inclined at an angle of 25 ∘ above the horiz
    14·1 answer
  • What is the basis for rutherford's planetary model?
    7·1 answer
  • A motor does a total of 480 joules of work in 5.0 seconds to lift a 12-kilogram block to the top of a rampThe average power deve
    7·1 answer
  • Distance vs. displacement
    13·1 answer
  • Connecting many devices in a single socket does not affect the flow of current in a
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!