Answer:
a. 11.26 % b. 6.76 %. It appears so since 6.76 % ≠ 15 %
Step-by-step explanation:
a. This is a binomial probability.
Let q = probability of giving out wrong number = 15 % = 0.15
p = probability of not giving out wrong number = 1 - q = 1 - 0.15 = 0.75
For a binomial probability, P(x) = ⁿCₓqˣpⁿ⁻ˣ. With n = 10 and x = 1, the probability of getting a number wrong P(x = 1) = ¹⁰C₁q¹p¹⁰⁻¹
= 10(0.15)(0.75)⁹
= 1.5(0.0751)
= 0.1126
= 11.26 %
b. At most one wrong is P(x ≤ 1) = P(0) + P(1)
= ¹⁰C₀q⁰p¹⁰⁻⁰ + ¹⁰C₁q¹p¹⁰⁻¹
= 1 × 1 × (0.75)¹⁰ + 10(0.15)(0.75)⁹
= 0.0563 + 0.01126
= 0.06756
= 6.756 %
≅ 6.76 %
Since the probability of at most one wrong number i got P(x ≤ 1) = 6.76 % ≠ 15 % the original probability of at most one are not equal, it thus appears that the original probability of 15 % is wrong.
Answer:
Option D
Step-by-step explanation:
I think the least preferred method the researcher would like is to select a random sample of students from each college. This means the researcher would have to go to every college and randomly selects participants which is very exhausting. Thus, this would be the least prefer method over the others...
Answer:
8,3,2,-1,-5,-9
Step-by-step explanation:
not sure if you can understand english at all but
basically you order the values from greatest to least. negative numbers are special because they are greater the lower the number is. all that means is -1 is greater than -9 because its closer to 0.
hope i helped :)
Answer:$40.24
Step-by-step explanation:
You can set up a ratio problem
take what you know and set it equal to what you don't know
4/6 = r/15
Cross multiply and get:
60 = 6r
divide by 6
r = 10