Answer:
The area of a horizontal cross section at a height is ![\pi\times(2-\dfrac{y}{7})^2](https://tex.z-dn.net/?f=%5Cpi%5Ctimes%282-%5Cdfrac%7By%7D%7B7%7D%29%5E2)
Step-by-step explanation:
Given that,
Height = 14 m
Radius = 2 m
Let V be the volume of a right circular cone
We need to calculate the value of R
Using given data
![\dfrac{h}{r}=\dfrac{h-y}{R}](https://tex.z-dn.net/?f=%5Cdfrac%7Bh%7D%7Br%7D%3D%5Cdfrac%7Bh-y%7D%7BR%7D)
Put the value into the formula
![\dfrac{14}{2}=\dfrac{14-y}{R}](https://tex.z-dn.net/?f=%5Cdfrac%7B14%7D%7B2%7D%3D%5Cdfrac%7B14-y%7D%7BR%7D)
![7R=14-y](https://tex.z-dn.net/?f=7R%3D14-y)
![R=2-\dfrac{y}{7}](https://tex.z-dn.net/?f=R%3D2-%5Cdfrac%7By%7D%7B7%7D)
We need to calculate the area of a horizontal cross section at a height y
Using formula of area
![A=\pi R^2](https://tex.z-dn.net/?f=A%3D%5Cpi%20R%5E2)
Put the value into the formula
![A=\pi\times(2-\dfrac{y}{7})^2](https://tex.z-dn.net/?f=A%3D%5Cpi%5Ctimes%282-%5Cdfrac%7By%7D%7B7%7D%29%5E2)
Hence, The area of a horizontal cross section at a height is ![\pi\times(2-\dfrac{y}{7})^2](https://tex.z-dn.net/?f=%5Cpi%5Ctimes%282-%5Cdfrac%7By%7D%7B7%7D%29%5E2)
Im not sure but wouldnt it be 11 over negative 3?
Let 32% of x = 56
32%*x = 56
32/100 *x = 56
x = 56*100/32
x = 5600/32 = 175
hence, 32% of 175 is 56.
Answer:
50x - 3000
Step-by-step explanation:
Use the distributive property
50x - 3000
c
..............................................