1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
3 years ago
5

How many solutions does the system have?Explain

Mathematics
1 answer:
Sergio [31]3 years ago
4 0

Answer: it has no solution

Step-by-step explanation:

You might be interested in
Find the horizontal asymptote of of the graph of y=(-3x^6+5x+3)/9x^6+6x+4
NNADVOKAT [17]

Answer:

  y = -1/3

Step-by-step explanation:

As x gets large, the value of the expression approaches the ratio of the highest-degree terms in numerator and denominator:

  y = -3x^6/(9x^6) = -3/9

  y = -1/3

5 0
3 years ago
-x + 2y = 3<br> 2x – 3y = -6
s2008m [1.1K]

Answer:

x = -3

y = 0

Step-by-step explanation:

<u>Given</u><u> </u><u>equations</u><u> </u><u>:</u><u>-</u><u> </u>

<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u>

<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u>

<u>From</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u><u> </u><u> </u>

<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u>

<u>-x</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>-</u><u> </u><u>2</u><u>y</u><u> </u>

<u>x</u><u> </u><u>=</u><u> </u><u>2</u><u>y</u><u> </u><u>-</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u>

<u>From</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u><u> </u>

<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u>

<u>2</u><u>x</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>+</u><u> </u><u>3</u><u>y</u><u> </u>

<u>x =  \frac{ - 6 + 3y}{2}</u>

<u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>

<u>Equating</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u><u> </u><u>and</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>

<u>x</u><u> </u><u>=</u><u> </u><u>x</u><u> </u>

<u>2y - 3 =  \frac{ - 6 + 3y}{2}</u>

4y - 6 = -6 + 3y

4y - 3y = -6 + 6

y = 0

Putting value of y in ( iii )

x = 2y - 3

x = 2 ( 0 ) - 3

x = -3

4 0
2 years ago
The cosine of 23° is equivalent to the sine of what angle
Archy [21]

Answer:

So 67 degrees is one value that we can take the sine of such that is equal to cos(23 degrees).

(There are more values since we can go around the circle from 67 degrees numerous times.)

Step-by-step explanation:

You can use a co-function identity.

The co-function of sine is cosine just like the co-function of cosine is sine.

Notice that cosine is co-(sine).

Anyways co-functions have this identity:

\cos(90^\circ-x)=\sin(x)

or

\sin(90^\circ-x)=\cos(x)

You can prove those drawing a right triangle.

I drew a triangle in my picture just so I can have something to reference proving both of the identities I just wrote:

The sum of the angles is 180.

So 90+x+(missing angle)=180.

Let's solve for the missing angle.

Subtract 90 on both sides:

x+(missing angle)=90

Subtract x on both sides:

(missing angle)=90-x.

So the missing angle has measurement (90-x).

So cos(90-x)=a/c

and sin(x)=a/c.

Since cos(90-x) and sin(x) have the same value of a/c, then one can conclude that cos(90-x)=sin(x).

We can do this also for cos(x) and sin(90-x).

cos(x)=b/c

sin(90-x)=b/c

This means sin(90-x)=cos(x).

So back to the problem:

cos(23)=sin(90-23)

cos(23)=sin(67)

So 67 degrees is one value that we can take the sine of such that is equal to cos(23 degrees).

6 0
2 years ago
Kim and Sam went to Mexico Restaurant for lunch. The total bill was $21.58. They decide to leave an 18% tip. How much will the t
GrogVix [38]

Answer:

$3.88

Step-by-step explanation:

You want to leave a 18% tip on a meal that cost $21.58.

First, convert the 18% to an actual number that can be used in a calculation. For percents,this is always done by simply dividing the percent (in this case 18%) by 100%.So, the conversational term "18%" becomes 18% / 100% = 0.18 in terms of a real mathematical number.

Second, you need to find out what 18% of your $21.58 meal cost is.This is always done by multiplying 0.18 by $21.58, or 0.18 x $21.58=$3.88.

So, the amount of tip you are going to leave is $3.88.

7 0
3 years ago
9=-7x+7x^2 Helppp please
8_murik_8 [283]

Answer:

x= 0.21428571428 or x=0.2

Step-by-step explanation:

-7x+7x^2=9  1. simplify 7x^2

-7x+ 7x(7x)=9   2. combine like terms

-7x+49x=9    3. combine like terms

42x=9           4. /42 on both sides

x= 0.21428571428 or x=0.2

8 0
2 years ago
Other questions:
  • Larry used a pattern of colors to make a cube train. He used a red cube, a blue cube, a red cube, and another red cube before he
    10·1 answer
  • If Container A weighs 3 pounds Container B weighs 5 pounds Container C weighs 3.5 pounds and Container D weighs 2.75 pounds what
    14·1 answer
  • The human eye can detect amounts of light that differ by a factor of.
    15·1 answer
  • The length of a rectangle is 2 ft longer than its width.
    15·1 answer
  • What is the simplified expression
    10·1 answer
  • Simplify <img src="https://tex.z-dn.net/?f=%5Csqrt%7B4%7D" id="TexFormula1" title="\sqrt{4}" alt="\sqrt{4}" align="absmiddle" cl
    14·1 answer
  • Find the value of each variable?
    6·2 answers
  • PLS HELP!
    13·1 answer
  • The school is planning a field trip. there are 2652 students and 78 seats on each school bus. How many buses are needed to take
    12·1 answer
  • Fill in table using this function rule y= -4x - 2
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!