Sounds to me as tho you are to graph 3x+5y<10, and that after doing so you are to restrict the shaded answer area created by the "constraint" inequality x≤y+1. OR x-1 ≤ y OR y≥x-1. If this is the correct assumption, then please finish the last part of y our problem statement by typing {x-y<=1}.
First graph 3x+5y = 10, using a dashed line instead of a solid line.
x-intercept will be 10/3 and y-intercept will be 2. Now, because of the < symbol, shade the coordinate plane BELOW this dashed line.
Next, graph y=x-1. y-intercept is -1 and x intercept is 1. Shade the graph area ABOVE this solid line.
The 2 lines intersect at (1.875, 0.875). To the LEFT of this point is a wedge-shaped area bounded by the 2 lines mentioned. That wedge-shaped area is the solution set for this problem.
Answer:
60 degrees
Step-by-step explanation:
Angles 1 and 2 are "corresponding angles" and as such are equal. Thus, the measure of angle 2 is 60 degrees.
we can take a peek at two of those lines hmmm say y = 5x + 3 and y = 5x + 7.
let's notice, those two equations for those lines are in slope-intercept form, so let's solve the system.
since y = y then
5x + 3 = 5x + 7
3 = 7 what the?
well, notice, both lines have the same slope of 5, but different y-intercept, one has it at y = 3 and the other at y = 7, what does that mean?
it means that both lines are parallel to each other, one may well be above the other, but both are parallel, and since a solution to the system is where their graphs intersect, well, parallel lines never touch, so a system with two parallel lines has no solutions.
The addition property of equality