1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Keith_Richards [23]
3 years ago
7

7y + 3 = 8y − 7 + 2y

Mathematics
2 answers:
Paladinen [302]3 years ago
8 0

Answer:

Y=10/3

Step-by-step explanation:

Ira Lisetskai [31]3 years ago
7 0

Answer:

Exact Form:

y

=

10

3

Decimal Form:

y

=

3.

¯

3

Mixed Number Form:

y

=

3

1

3

Step-by-step explanation:

You might be interested in
Allison can complete a sales route by herself in 6 hours. working with an associate, she completes the route in 4 hours. How lon
allsm [11]
We know that
if <span>Allison can complete a sales route by herself in 6 hours
then
100% of the sales route---------------> 6 hours
x%--------------------------> 1 hour
x=100/6-----> x=16.67%/hour


Allison </span><span>working with an associate, she completes the route in 4 hours
</span>then 
100%------------------> 4 hours
x%----------------> 1 hour
x=100/4-----> x=25%

An associate in 1 hour complete-------> 25%-16.67%----> 8.33%
then
 an associate complete in 1 hour--------> 8.33%
 x hour--------------------------> 100%
x=100/8.33-----> x=12 hours

the answer is
12 hours

4 0
4 years ago
Read 2 more answers
6√18 + 3√50 simply ?
-BARSIC- [3]
33square2  i think that is what it is
4 0
3 years ago
Read 2 more answers
The problem is attached, thanks.
NeX [460]

Answer:

\displaystyle \frac{dy}{dx} \bigg| \limit_{(1, 4)} = 2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Coordinates (x, y)
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Implicit Differentiation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \sqrt{x} - \sqrt{y} = -1

Point (1, 4)

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                               \displaystyle x^{\frac{1}{2}} - y^{\frac{1}{2}} = -1
  2. [Implicit Differentiation] Basic Power Rule:                                                 \displaystyle \frac{1}{2}x^{\frac{1}{2} - 1} - \frac{1}{2}y^{\frac{1}{2} - 1}\frac{dy}{dx} = 0
  3. [Implicit Differentiation] Simplify Exponents:                                               \displaystyle \frac{1}{2}x^{\frac{-1}{2}} - \frac{1}{2}y^{\frac{-1}{2}}\frac{dy}{dx} = 0
  4. [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]:                   \displaystyle \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = 0
  5. [Implicit Differentiation] Isolate <em>y</em> terms:                                                       \displaystyle -\frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = -\frac{1}{2x^{\frac{1}{2}}}
  6. [Implicit Differentiation] Isolate \displaystyle \frac{dy}{dx}:                                                               \displaystyle \frac{dy}{dx} = \frac{2y^{\frac{1}{2}}}{2x^{\frac{1}{2}}}
  7. [Implicit Differentiation] Simplify:                                                                 \displaystyle \frac{dy}{dx} = \frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}}

<u>Step 3: Evaluate</u>

  1. Substitute in point [Derivative]:                                                                     \displaystyle \frac{dy}{dx} = \frac{(4)^{\frac{1}{2}}}{(1)^{\frac{1}{2}}}
  2. Exponents:                                                                                                     \displaystyle \frac{dy}{dx} = \frac{2}{1}
  3. Division:                                                                                                         \displaystyle \frac{dy}{dx} = 2

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

6 0
3 years ago
HELP ASAP
IrinaVladis [17]

Answer:

y-5=(x-6)?

Step-by-step explanation:

Hope this helped!

-BB

3 0
3 years ago
Please help me with my homework I need to submit it tomorrow on tuesday
otez555 [7]
1. Yes
2. No
3. 46.6 (recurring)
5. 22'
Sorry this is all I can do. Hope this helps :)
3 0
4 years ago
Other questions:
  • PLEASE ANSWER QUICKLY: SURFACE AREA<br><br> If you don't know the answer please don't guess.
    6·1 answer
  • Kinda been stuck on this one, someone pls let me know
    6·2 answers
  • Pls ANSWER URGENT!!!!
    10·1 answer
  • Which of the following is a solution to the following system of equations?
    10·1 answer
  • Don Chather bought a new Dell computer for $1,995. This included a 6% sales tax. What is the amount of sales tax and the selling
    12·1 answer
  • Jonah starts jogging at a constant speed of 6 miles per hour, Five minutes later, Sory jogging from the sa me place along the sa
    10·1 answer
  • 10x -15x + 5= -45 + 20
    11·1 answer
  • HELP ME OUT !!! im stressing out keep getting it wrong
    12·1 answer
  • Need help thank you very
    10·1 answer
  • Gabe paid $ 120 for 3 shirts and 2 pairs of pants.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!