Answer:
8n.
Step-by-step explanation:
You would be multiplying the amount of teams by the number of members to find the total members, hence 8 times n.
Given:
Point F,G,H are midpoints of the sides of the triangle CDE.

To find:
The perimeter of the triangle CDE.
Solution:
According to the triangle mid-segment theorem, the length of the mid-segment of a triangle is always half of the base of the triangle.
FG is mid-segment and DE is base. So, by using triangle mid-segment theorem, we get




GH is mid-segment and CE is base. So, by using triangle mid-segment theorem, we get




Now, the perimeter of the triangle CDE is:



Therefore, the perimeter of the triangle CDE is 56 units.
Answer:
8,3
Step-by-step explanation:
6m+4 = 8m
8m-6m = 4
2m = 4
m = 2
if you are asking for 4m, then it would be 4(2) = 8
Answer:
if repetition is allowed,
if repetition is not allowed.
Step-by-step explanation:
For the first case, we have a choice of 26 letters <em>each step of the way. </em>For each of the 26 letters we can pick for the first slot, we can pick 26 for the second, and for each of <em>those</em> 26, we can pick between 26 again for our third slot, and well, you get the idea. Each step, we're multiplying the number of possible passwords by 26, so for a four-letter password, that comes out to 26 × 26 × 26 × 26 =
possible passwords.
If repetition is <em>not </em>allowed, we're slowly going to deplete our supply of letters. We still get 26 to choose from for the first letter, but once we've picked it, we only have 25 for the second. Once we pick the second, we only have 24 for the third, and so on for the fourth. This gives us instead a pretty generous choice of 26 × 25 × 24 × 23 passwords.