During cellular respiration, carbon dioxide is released to the atmosphere during the formation of acetyl coenzyme A<span>. This step involves the oxidative decarboxylation of pyruvic acid, the result of which is carbon dioxide. This carbon dioxide is uptaken by plants and used in the process of photosynthesis to produce glucose.</span>
More enzymes more useful collisions
Answer:
- Glycine
- Ribulose 1,5-bisphosphate
- 3-phosphoglycerate
- Glyceraldehyde 3-phosphate.
- Glucose
- Sucrose
Explanation:
The glycine, among other amino acids, helps to improve chlorophyll production and promotes the process of photosynthesis.
<u>Calvin cycle</u>
During the carbon fixation phase, a CO² molecule combinate with a ribulose 1,5-bisphosphate to form 6-carbonated molecules, which will divide into two 3-phosphoglycerate molecules.
During the reduction phase, NADPH donates its electrons to reduce 3-phosphoglycerate molecules, and turn them into glyceraldehyde 3-phosphate.
During the regeneration phase, a glyceraldehyde 3-phosphate molecule leaves the cycle and goes to the cytosol to form glucose. This step can be done when three CO² enter the cycle and produce six glyceraldehyde 3-phosphate molecules. One of them leaves the cycle to form glucose, while the other five are recycled.
<u>Cytosol: </u>
Once in the cytosol, glyceraldehyde 3-phosphate molecules are used to form glucose and fructose. These two molecules are the monosaccharides that form the sucrose.
Once sucrose is formed, it is transported from the photosynthetic tissues to different parts of the plant by the phloem.
your answer would be c) iron deficiency
D. All of the above are true.