Answer: The three different equations will be

Step-by-step explanation:
We have to write three equation that have x = 5 as a solution:
1) First equation will be

2) Second equation will be

3) Third equation will be

Hence, the three different equations will be

<span>Lets say the 1st die rolled a 2 -
there would be 2 combinations for which the sum of dice being < 5 :
2,1
2,2
Now say the 2nd die rolled a 2 -
there would be 2 combinations for which the sum of dice being < 5 :
1,2
2,2
Now we want to count all cases where either dice showed a 2 and sum of the dice was < 5. However note above that the roll (2,2) is counted twice.
So there are three unique dice roll combinations which answer the criteria of at least one die showing 2, and sum of dice < 5:
1,2
2,1
2,2
The total number of unique outcomes for two dice is 6*6=36 .
So, the probability you are looking for is 3/36 = 1/12</span>
Look kid, this question has been up for 16 hours think its time to let it go......... hoped i helped. ✔verified✔
Answer:
What are the choices? How are we supposed to solve it? Seriously man
Step-by-step explanation: