let's firstly convert the mixed fraction to improper fraction and then multiply.
![\bf \stackrel{mixed}{3\frac{2}{5}}\implies \cfrac{3\cdot 5+2}{5}\implies \stackrel{improper}{\cfrac{17}{5}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{17}{~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\cdot ~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~\implies 17](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B2%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B2%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B17%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B17%7D%7B~~%5Cbegin%7Bmatrix%7D%205%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Ccdot%20~~%5Cbegin%7Bmatrix%7D%205%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%5Cimplies%2017)
F(x)=5x^2 Has minimum (0,0)
g(x) = f(x) + 2 Shifts the graph two units up, then the minimum is 2+0=2.
h(x) = g(x+4) Shifts the graph four units left, then the minimum is at 0-4 = -4.
Then h(x) = 5(x+4)^2 + 2 has the minimum (-4,2)
And p(x) = -5(x+4)^2 + 2 has the maximum (-4,2)
Length of square side= 2 cm
Dilation factor= 7/3
Simplify 7/3= 2.33
Apply the dilation factor:
Length of side= 2.33 x 2 = 4.67 cm
As the length of the side of the square is increased in length, which means the dilated image is larger than the original image.
Answer: Larger than then original.
Answer:
-17
Step-by-step explanation:
1w= -17
(1)(-17)=
-17