Unfortunately, this item does not come with any figure to illustrate the lengths of the rectangle. However, it may be noted that by connecting two opposite vertices of a rectangle by a diagonal, we form a right triangle. We may then use the Pythagorean theorem to solve for the answer.
a² + b² = c²
c in this equation is the length of the diagonal, a and b are the lengths of the sides.
Answer:
Step-by-step explanation:--0.9
Answer:

Step-by-step explanation:
1/6 + 1/6 + 1/3 + 1/3 + 1/3 + 1/2 + 2/3 + 2/3 + 2/3 + 5/6 = 14/3
(14/3)/11 = 14/33
Hope this helps!
(Please mark Brainliest)
To solve for the slope given two lines, use the formula:
(y₂ - y₁)
----------
(x₂ - x₁)
Set one of the points as (x₁, y₁), and the other as (x₂, y₂).
(x₁, y₁) = <span>(0,32)
</span>(x₂, y₂) <span>= (100,212)
plug into corresponding places:
</span>(y₂ - y₁) (212 - 32) (180)
---------- = -------------- = -------
(x₂ - x₁) (100 - 0) (100)
180/100 is your slope
If you want simplified, it will be: 9/5
hope this helps
<u><em>Answer:</em></u>
SAS
<u><em>Explanation:</em></u>
<u>Before solving the problem, let's define each of the given theorems:</u>
<u>1- SSS (side-side-side):</u> This theorem is valid when the three sides of the first triangle are congruent to the corresponding three sides in the second triangle
<u>2- SAS (side-angle-side):</u> This theorem is valid when two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
<u>3- ASA (angle-side-angle):</u> This theorem is valid when two angles and the included side between them in the first triangle are congruent to the corresponding two angles and the included side between them in the second triangle
<u>4- AAS (angle-angle-side):</u> This theorem is valid when two angles and a side that is not included between them in the first triangle are congruent to the corresponding two angles and a side that is not included between them in the second triangle
<u>Now, let's check the given triangles:</u>
We can note that the two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
This means that the two triangles are congruent by <u>SAS</u> theorem
Hope this helps :)