Static friction is the friction that exists between a stationary object and the surface on which it's resting.
frictional force occurs when you try to push an object alongside a surface.
Answer:
The radius of the gold nucleus is 7.1x10⁻¹⁵m
Explanation:
The nearest distance is:
(eq. 1)
Where
z = atomic number of gold = 79
e = electron charge = 1.6x10⁻¹⁹C
k = electrostatic constant = 9x10⁹Nm²C²
energy of the particle = 32 MeV = 5.12x10⁻¹²J
At the potential energy is zero, all the energy will be kinetic energy:

Where
m = 4 mp = mass of proton

Replacing in equation 1

Answer:
8.13secs
Explanation:
From the question weal are given
Height H =324m
Required
time it takes to drop t
Using the equation of motion
H = ut + 1/2gt²
Substitute the given values
324 = 0(t)+1/2(9.8)t²
324 = 1/2(9.8)t²
324 = 4.9t²
t² =324/4.9
t² = 66.12
t = √66.12
t = 8.13secs
Hence the time taken to drop is 8.13secs
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object