The wavelength of the note is
. Since the speed of the wave is the speed of sound,
, the frequency of the note is
Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by
where
is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
F=ma
Therefore the net force = 1000kg × 2 metres per second per second
So F=2000 N
Answer: Separately derived system
Explanation: A separately derived system is used to describe a premise wiring system whose power is derived from a source of electrical energy such as transformer, solar photovoltaic cell or generator. A separately derived system has no direct connection to any conductor from another system or doesn't generate it's power from any direct connection to a conductor from another system or source except those from established from bonding or grounding connections. Separately derived systems usually generate it's power on it's own.
Explanation:
(a)
Critical angle is the angle at the angle of refraction is 90°. After the critical angle, no refraction takes place.
Using Snell's law as:
Where,
is the angle of incidence
is the angle of refraction = 90°
is the refractive index of the refraction medium
is the refractive index of the incidence medium
Thus,
The formula for the calculation of critical angle is:
Where,
is the critical angle
(b)
No it cannot occur. It only occur when the light ray bends away from the normal which means that when it travels from denser to rarer medium.