Answer:
64.945 miles per hour
Explanation:
Since the frequency of sound heard is higher than actual frequency, the ambulance is moving towards you!
The frequency of sound waves as heard from a distance for a sound wave coming towards one at v₀ m/s and whose real frequency is f₀ is given by
+f = f₀/[1 - (v₀/v)]
+f = frequency of sound as heard from the distance away = 8.61 KHz
f₀ = real frequency of sound = 7.87 KHz
v₀ = velocity at which the sound source is moving towards the reference point = ?
v = velocity of sound waves = 343 m/s
8.61 = 7.87/(1 - (v₀/v))
1 - (v₀/343) = 0.9141
v₀/343 = 1 - 0.9141 = 0.0859
v₀ = 343 × 0.0859 = 29.48 m/s = 64.945 miles per hour
Answer:
Ratio of series current to parallel
= 1 : 8
Explanation:
Total resistance Rt
For series, Rt = 2+2+2+2 = 4ohms
For parallel, 1/Rt = 1/2 + 1/2 + 1/2 + 1/2
1/Rt = 4/2, Rt = 2/4 ohms.
If we use a 1V battery, then,
I = V/Rt
I = 1/4 = 0.25 ampere for series arrangement.
I = 1/0.5 = 2 ohms.
Ratio of current of series to parallel = 0.25 : 2
= 1 : 8
Answer:
scratching a surface to make it rougher
increasing the size of a flying object
adding extra weight to an object
Explanation:
Period = (1) / (frequency)
Period = (1) / (200 per second) = 0.005 second = 5 milliseconds
Answer:
85.556metres
Explanation:
Using pythagorean theorem
C²=A²+B²
we have c as the hypotenuse vector A thus:
93.8²=A²+38.4²
93.8²-38.4²=A²
8794.44-1474.56=A²
7319.88=A²
A=85.556