1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
10

Twenty percent of all telephones of a certain type are submitted for service while under warranty. Of these, 70% can be repaired

, whereas the other 30% must be replaced with new units. If a company purchases ten of these telephones, what is the probability that exactly two will end up being replaced under warranty?
Mathematics
1 answer:
Talja [164]3 years ago
7 0

Answer:

The required probability is 0.09875

Step-by-step explanation:

From the given information;

the probability of repairing the telephones = 0.70

the probability of the replaced = 0.30

Suppose we consider  Mto denotes the telephone that is submitted for service while under warranty and must be replaced.

Then;

p = P(S) = P(replaced | submitted) P(submitted)

= 0.30 × 0.20

= 0.06

Now, the probability that exactly two will end up being replaced under warranty given that it assumes  a binomial distribution where n = 10 and p = 0.06

P(X=2)=\bigg (^{10}_{2}\bigg) 0.06^2(1-0.06)^{10-2}

P(X=2)=\dfrac{10!}{2!(10-2)!}\times  0.06^2\times (0.94)^{8}

\mathbf{P(X=2)=0.09875}

You might be interested in
Let ????C be the positively oriented square with vertices (0,0)(0,0), (2,0)(2,0), (2,2)(2,2), (0,2)(0,2). Use Green's Theorem to
bonufazy [111]

Answer:

-48

Step-by-step explanation:

Lets call L(x,y) = 10y²x, M(x,y) = 4x²y. Green's Theorem stays that the line integral over C can be calculed by computing the double integral over the inner square  of Mx - Ly. In other words

\int\limits_C {L(x,y)} \, dx + M(x,y) \, dy =  \int\limits_0^2\int\limits_0^2 (M_x - L_y ) \, dx \, dy

Where Mx and Ly are the partial derivates of M and L with respect to the x variable and the y variable respectively. In other words, Mx is obtained from M by derivating over the variable x treating y as constant, and Ly is obtaining derivating L over y by treateing x as constant. Hence,

  • M(x,y) = 4x²y
  • Mx(x,y) = 8xy
  • L(x,y) = 10y²x
  • Ly(x,y) = 20xy
  • Mx - Ly = -12xy

Therefore, the line integral can be computed as follows

\int\limits_C {10y^2x} \, dx + {4x^2y} \,dy = \int\limits_0^2\int\limits_0^2 -12xy \, dx \, dy

Using the linearity of the integral and Barrow's Theorem we have

\int\limits_0^2\int\limits_0^2 -12xy \, dx \, dy = -12 \int\limits_0^2\int\limits_0^2 xy \, dx \, dy = -12 \int\limits_0^2\frac{x^2y}{2} |_{x = 0}^{x=2} \, dy = -12 \int\limits_0^22y \, dy \\= -24 ( \frac{y^2}{2} |_0^2) = -24*2 = -48

As a result, the value of the double integral is -48-

3 0
4 years ago
How many solutions are there for the system of equations shown on the graph?
Marianna [84]
No solution did you get it right?
5 0
3 years ago
Read 2 more answers
Diane runs 10 miles in 55 minutes, how many minuets does she take per mile?
Brut [27]

Step-by-step explanation:

<em>Hi</em><em>!</em><em>!</em>

<em> </em><em>It's</em><em> </em><em>simple</em><em>, </em><em>you</em><em> </em><em>can</em><em> </em><em>do</em><em> </em><em>it</em><em> </em><em>easily</em><em>. </em>

<em>no</em><em>.</em><em> </em><em>of</em><em> </em><em>miles</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em> </em><em>miles</em>

<em>time</em><em> </em><em>=</em><em> </em><em>5</em><em>5</em><em> </em><em>mins</em><em>.</em>

<em>now</em><em>,</em>

<em>n</em><em>o</em><em>.</em><em> </em><em>o</em><em>f</em><em> </em><em>m</em><em>i</em><em>n</em><em>s</em><em> </em><em>for</em><em> </em><em>1</em><em> </em><em>mile</em><em> </em><em>=</em><em> </em><em>no</em><em>.</em><em> </em><em>of</em><em> </em><em>miles</em><em>/</em><em> </em><em>time</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em> </em><em>/</em><em>5</em><em>5</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>0</em><em>.</em><em>1</em><em>8</em><em>1</em><em>8</em><em>1</em><em>8</em><em>1</em><em>8</em><em> </em><em>min</em><em>.</em>

<em>so</em><em>,</em><em> </em><em>she</em><em> </em><em>takes</em><em> </em><em>0</em><em>.</em><em>1</em><em>8</em><em>1</em><em>8</em><em>1</em><em>8</em><em> </em><em>or</em><em> </em><em>2</em><em>/</em><em>1</em><em>1</em><em> </em><em>min</em><em> </em><em>per</em><em> </em><em>each</em><em> </em><em>mile</em><em>.</em>

<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

5 0
4 years ago
Read 2 more answers
The graph of a quadratic function contains the points
masya89 [10]

Answer:

Shawn is correct.

Step-by-step explanation:

Let the quadratic function is g(x) = a(x - h)² + k

Here (h, k) is the vertex of the parabola.

Since this parabola passes through (0, 0), (1, 9) and (-1, 9), axis of symmetry is x = 0 and the vertex is (0, 0).

Therefore, equation of the parabola will be,

g(x) = a(x - 0)²+ 0

g(x) = ax²

for a point (1, 9) which lies on the graph,

9 = a(1)²

a = 9

g(x) = 9x² (here a > 1)

Therefore, f(x) is vertically stretched by a factor of 9 to form g(x).

Shawn is correct.

3 0
3 years ago
If anyone could solve this question for me while showing the steps. It would be GREATLY appreciated
Blizzard [7]

this is a very annoying problem, with lots of steps. it is on a next level of dragging on and on

Step-by-step explanation:

You can split this into different shapes. A triangle, a rectangle, and a void of a quarter circle. The total area is rectangle+triangle-quarter circle.

We find the second side of the triangle by doing 65-48=17

We then use the pythagorean theorem to find the third length. This is about 49.1426.

We can then use whatever method you'd like for finding the area of the triangle. it turns out to be about 417.7125

Next, we find the rectangle, easy enough, 49.1426*48=2358.8448

which seems a bit scuffed until you realize that the diagram itself is scuffed as well. Great, quarter circle next

16*16*pi/4=201.0619

Alright, now to combine it to find the area.

417.7125+2358.8448-201.0619=2575.4954

great, now let's find the perimeter, simple enough. Curved perimeter+straight perimeter-that one corner in the bottom right

52+48+49.1426+65-32+25.1327=207.2753

and now we convert to meters

207.2753feet=63.1775meters

We are almost done! Now let's find the cost.

Fencing first:

63.1775*8.50=537.01

Then the cement

2575.4954*5.50=14165.2247

Then we add it up and apply tax:

537.01+14165.2247=14702.2347

14702.23*1.13=$<u><em>16613.53</em></u>

if you find anything wrong message me, I may have made errors because its 10pm and i need sleep. I recommend you work through my steps on your own as well. There might be complications with rounding as well, so yea. Hope this helps!

3 0
2 years ago
Other questions:
  • Which symbol correctly compares 8/15 and 5/8? &gt;,=,&lt;
    13·1 answer
  • Find the exact function value of tan 135
    8·2 answers
  • Need help in these to math problems
    11·1 answer
  • Image attached: geometry
    7·2 answers
  • How do you know how many places are in fifty million without writing the number in standard form?
    8·1 answer
  • Encontrar las coordenadas en el círculo trigonométrico para los segmentos de recta cuyo ángulo tienen un valor de α = 45°
    15·1 answer
  • PLEASE HELP
    9·1 answer
  • Sneakychicken help me ​
    8·1 answer
  • What number is missing ? 54÷ ? =6​
    11·2 answers
  • If 2 = x - 3, then x
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!