1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
2 years ago
10

Which ordered pair satisfies both of the following equations x + y = 5 y = 2

Mathematics
1 answer:
Kruka [31]2 years ago
5 0

Answer:

Idk

Step-by-step explanation:

You might be interested in
Does x equal if the problem is negative x -4x - 7 equals 5 negative 2X
Sphinxa [80]

Answer:

X = - 4

Step-by-step explanation:

Given in problem

- x -4x - 7 = 5 -2x

Or, -5x - 7 = 5- 2x

Or, -5x + 2x = 5 + 7

Or, -3x = 12

Or, x = - \frac{12}{3}

∴ X = - 4    Answer

6 0
3 years ago
Solve using quadratic formula<br> 6x^2-x=2
Nadya [2.5K]

6x^2-x=2\implies 6x^2-1x-2=0 \\\\[-0.35em] ~\dotfill\\\\ ~~~~~~~~~~~~\textit{quadratic formula} \\\\ \stackrel{\stackrel{a}{\downarrow }}{6}x^2\stackrel{\stackrel{b}{\downarrow }}{-1}x\stackrel{\stackrel{c}{\downarrow }}{-2}=0 \qquad \qquad x= \cfrac{ - b \pm \sqrt { b^2 -4 a c}}{2 a}

x = \cfrac{ -(-1) \pm \sqrt { (-1)^2 -4(6)(-2)}}{2(6)}\implies x = \cfrac{1\pm\sqrt{1+48}}{12} \\\\\\ x = \cfrac{1\pm\sqrt{49}}{12}\implies x = \cfrac{1\pm 7}{12}\implies x = \begin{cases} \frac{8}{12}\to &\frac{2}{3}\\[1em] -\frac{6}{12}\to &-\frac{1}{2} \end{cases}

7 0
2 years ago
Help please! anything is appreciated, giving brainliested:)
Vaselesa [24]

Answer:

(-20,0) (0,-4)

Step-by-step explanation:

4 0
2 years ago
Use the Chain Rule to find the indicated partial derivatives. z = x^4 + xy^3, x = uv^4 + w^3, y = u + ve^w Find : ∂z/∂u , ∂z/∂v
k0ka [10]

I'll use subscript notation for brevity, i.e. \frac{\partial f}{\partial x}=f_x.

By the chain rule,

z_u=z_xx_u+z_yy_u

z_v=z_xx_v+z_yy_v

z_w=z_xx_w+z_yy_w

We have

z=x^4+xy^3\implies\begin{cases}z_x=4x^3+y^3\\z_y=3xy^2\end{cases}

and

\begin{cases}x=uv^4+w^3\\y=u+ve^w\end{cases}\implies\begin{cases}x_u=v^4\\x_v=4uv^3\\x_w=3w^2\\y_u=1\\y_v=e^w\\y_w=ve^w\end{cases}

When u=1,v=1,w=0, we have

\begin{cases}x(1,1,0)=1\\y(1,1,0)=2\end{cases}\implies\begin{cases}z_x(1,2)=12\\z_y(1,2)=12\end{cases}

and the partial derivatives take on values of

\begin{cases}x_u(1,1,0)=1\\x_v(1,1,0)=4\\x_w(1,1,0)=0\\y_u(1,1,0)=1\\y_v(1,1,0)=1\\y_w(1,1,0)=1\end{cases}

So we end up with

\boxed{\begin{cases}z_u(1,1,0)=24\\z_v(1,1,0)=60\\z_w(1,1,0)=12\end{cases}}

3 0
3 years ago
Please help will reward brainly
soldier1979 [14.2K]
I think the answer would be 1. 
7 0
3 years ago
Other questions:
  • 3. Which brand of maple syrup is a better buy
    11·1 answer
  • The probability of a given event is 0.03.
    11·1 answer
  • What is the cirumference of a circle with a diameter of 4.1 cm
    11·1 answer
  • Which angle in the diagram is obtuse
    15·1 answer
  • What number times itself gives 256
    13·2 answers
  • Which of the following equations could represebt the point in the table select all the following
    8·1 answer
  • 1/5 k = 20 solvve for k
    5·2 answers
  • Solve for x: (5 points) negative 3 over 2, multiplied by x minus 9 equals negative 27 a −24 b −12 c 11 d 12
    10·1 answer
  • Part 5 ASAP math ofc
    12·1 answer
  • The function f(x) is graphed below. The domain of the function is​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!