Answer:
(3 ± √23 * i) /4
Step-by-step explanation:
To solve this, we can apply the Quadratic Equation.
In an equation of form ax²+bx+c = 0, we can solve for x by applying the Quadratic Equation, or x = (-b ± √(b²-4ac))/(2a)
Matching up values, a is what's multiplied by x², b is what's multiplied by x, and c is the constant, so a = 2, b = -3, and c = 4
Plugging these values into our equation, we get
x = (-b ± √(b²-4ac))/(2a)
x = (-(-3) ± √(3²-4(2)(4)))/(2(2))
= (3 ± √(9-32))/4
= (3 ± √(-23))/4
= (3 ± √23 * i) /4
Answer:
1,2 and 3 because this three are positive numbers and when added and multipled both gives the same answer 6. 1,2 and 3 are the positive integers and the result of their addition and their multiplication is same .
Step-by-step explanation:
Answer:
The set of numbers that could not represent the three sides of a right triangle are;
{9, 24, 26}
Step-by-step explanation:
According to Pythagoras's theorem, when the lengths of the three sides of a right triangle includes two legs, 'x', and 'y', and the hypotenuse side 'r', we have;
r² = x² + y²
Where;
r > x, r > y
Therefore, analyzing the options using the relationship between the numbers forming the three sides of a right triangle, we have;
Set 1;
95² = 76² + 57², therefore, set 1 represents the three sides of a right triangle
Set 2;
82² = 80² + 18², therefore, set 2 represents the three sides of a right triangle
Set 3;
26² = 24² + 9², therefore, set 3 could not represent the three sides of a right triangle
Set 4;
39² = 36² + 15², therefore, set 4 represents the three sides of a right triangle
Answer:
The answer is All integers where n ≥ 1
Hope this helps!