Answer:
The correct answer is to: characterized them and study them on the based of shared characteristics, similarities and phylogeny.
Explanation:
Arranging different type of organisms on the basis of their shared characteristics such as physical similarities, anatomical characters, phylogeny, habitat they share and many more, in order to study them easily known as classification.
Classification helps understanding the diversity of living organisms with the help of their features, similarities and differences. Aim of the classifying organisms is to, identification of organisms, to establishing the evolutionary relation among different type of organisms and studying the phylogeny.
Explanation:
High-energy electrons are transported from the chlorophyll to other molecules by electron carriers beginning with pheophytin, P0 (a form of chlorophyll), then A1 phylloquinone etc.
The chloroplast is an organelle attached to the membrane found in plants. This comprises many plasma membrane invaginations called the thylakoid membrane. It contains chlorophyll pigments, called granum in rows, while the organelle's internal areas are called the lumen. Water fills the granum and the stroma is created.
Further Explanation:
<em>During the light reaction: </em>
- Photosystem II (PSII) contains pigments which consume light energy. This energy is exchanged between pigments until it enters the reaction core and is moved to P680; this transfers an electron to a higher level of energy where it then travels to a molecule of acceptors.
- For those removed from photosystem II, water supplies the chlorophyll in plant cell with substitute electrons. Additionally, water (H2O) divided into H+ and OH-by light during photolysis acts as a source of oxygen along with functioning as a reducer.
- The electron moves down the electron transport chain via several electron carriers
- The e- is delivered (to PS I) where it has a continuous loss of energy. Such energy drives the drainage of H+ from the stroma to the thykaloid, which results in a gradient creation. The H+ pass down their curve, passing into the stroma by ATP synthase.
- ATP synthase converts ADP and Pi to the ATP molecule, which stores energy.
- The electron enters Photosystem I where it heads to P700 pigments. It's. This consumes light energy, transfers the electron to a higher energy level, and moves it on to an acceptor electron. This leaves room for another electron which is then replaced by a photosystem II electron.
- In the ETC the NADP molecule is reduced to NADPH by supplying H+ ions. NADP and NADPH are vital to the Calvin cycle, in which monosaccharides or glucose-like sugars are produced after several molecules have been modified.
Learn more about photosynthesis at brainly.com/question/4216541
Learn more about cellular life at brainly.com/question/11259903
#LearnWithBrainly
Answer:
integumentary, muscular, skeletal, nervous, circulatory, lymphatic, respiratory, endocrine, urinary/excretory, reproductive and digestive
Explanation:
Been doing this for a while
Mitosis separates the chromosomes into two different daughter cells.
Answer:
1. Mercury: 31.197 million mi
2. Venus: 66.81 million mi
3. Earth: 92.96 million mi
4. Mars: 141.6 million mi
5. Jupiter: 483.8 million mi
6. Saturn: 890.8 million mi
7. Uranus: 1.784 billion mi
8. Neptune: 2.793 billion mi
Explanation:
Hope this helps ;}