Answer:
D. 
Step-by-step explanation:
Since we know that the odds of an events can be found by dividing the probability that an event will occur by the probability that the event will not occur.
Probability of an event not occurring can be found by subtracting probability of the event occurring from 1.
We have been given that probability of an event is 2/7.
Upon substituting our given values in above formula we will get,




Therefore, the odds of the same event are
and option D is the correct choice.
In the inverse we replace the place of x by y .
![g(x) = \sqrt[3]{x} - 3 \\ \\ x = \sqrt[3]{y} - 3 \\ \sqrt[3]{y} = x + 3 \\ y = {(x + 3)}^{3} \\ y = {(x + 3)}^{2} (x + 3) \\ y = ({x}^{2} + 6x + 9)(x + 3) \\ \\ y = {x}^{3} + 6 {x}^{2} + 9x + 3 {x}^{2} + 18x + 27 \\ \\ y = {x}^{3} + 9 {x}^{2} + 27x + 27 \\ \\ \\ g(x)^{ - 1} = {x}^{3} + 9 {x}^{2} + 27x + 27](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%20%5Csqrt%5B3%5D%7Bx%7D%20%20-%203%20%5C%5C%20%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7By%7D%20%20-%203%20%5C%5C%20%20%5Csqrt%5B3%5D%7By%7D%20%20%3D%20x%20%2B%203%20%5C%5C%20y%20%3D%20%20%7B%28x%20%2B%203%29%7D%5E%7B3%7D%20%20%5C%5C%20y%20%3D%20%20%7B%28x%20%2B%203%29%7D%5E%7B2%7D%20%28x%20%2B%203%29%20%5C%5C%20y%20%3D%20%20%28%7Bx%7D%5E%7B2%7D%20%20%2B%206x%20%2B%209%29%28x%20%2B%203%29%20%5C%5C%20%5C%5C%20%20y%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%206%20%7Bx%7D%5E%7B2%7D%20%20%2B%209x%20%2B%203%20%7Bx%7D%5E%7B2%7D%20%20%2B%2018x%20%2B%2027%20%5C%5C%20%20%5C%5C%20y%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%209%20%7Bx%7D%5E%7B2%7D%20%20%2B%2027x%20%2B%2027%20%5C%5C%20%20%20%5C%5C%20%5C%5C%20g%28x%29%5E%7B%20-%201%7D%20%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%209%20%7Bx%7D%5E%7B2%7D%20%20%2B%2027x%20%2B%2027%20)
I hope I helped you^_^
Answer:
109 degrees.
Step-by-step explanation:
m< AEB = 1/2 (98 + 120)
= 1/2 * 218
= 109 degrees.
The answer is :
0.18181818
But you can also write it like this
Answer:
Option C is correct
Step-by-step explanation:
In above polynomial, 1 is highest degree of polynomial is 1.
<h3>Hope it is helpful....</h3>