The angles in degrees to radian is as follows:
-54 degrees = -3π / 10 radian
<h3>How to convert from degree to radian?</h3>
The measurement is in degrees. Let's convert it to radian with respect to π.
Therefore,
180 degrees = π radian
-54 degrees = ?
cross multiply
Hence,
angle in radian = -54 × π / 180
angle in radian = - 54π / 180
angle in radian = - 6π / 20
angle in radian = -3π / 10 radian
learn more on radian here: brainly.com/question/22212006
#SPJ1
Set up your two equations:
<span>9x+7y=53 </span>
<span>3x+5y=25 </span>
<span>X=cost per pound of jelly bean </span>
<span>Y=cost per pound of trail mix </span>
<span>Multiply the second equation by (-3): </span>
<span>-9x-15y=-75 </span>
<span>+ 9x+7y=53 <---- copy first equation and add them </span>
<span>—————— </span>
<span>0x-8y=-22 </span>
<span>Then solve for y: </span>
<span>Y=2.76 this is your cost per pound of trail mix. </span>
<span>Then plug y back in to one of the original equations and solve for x: </span>
<span>3x+7(2.75)=25 </span>
<span>X=3.75 this is you cost per pound of jelly beans</span>
Answer:
I think it is +2. I hope this helps.!
Step-by-step explanation:
the solid is made up of 2 regular octagons, 8 sides, joined up by 8 rectangles, one on each side towards the other octagonal face.
from the figure, we can see that the apothem is 5 for the octagons, and since each side is 3 cm long, the perimeter of one octagon is 3*8 = 24.
the standing up sides are simply rectangles of 8x3.
if we can just get the area of all those ten figures, and sum them up, that'd be the area of the solid.
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=5\\ p=24 \end{cases}\implies A=\cfrac{1}{2}(5)(24)\implies \stackrel{\textit{just for one octagon}}{A=60} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{two octagon's area}}{2(60)}~~+~~\stackrel{\textit{eight rectangle's area}}{8(3\cdot 8)}\implies 120+192\implies 312](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D5%5C%5C%20p%3D24%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%285%29%2824%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bjust%20for%20one%20octagon%7D%7D%7BA%3D60%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwo%20octagon%27s%20area%7D%7D%7B2%2860%29%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Beight%20rectangle%27s%20area%7D%7D%7B8%283%5Ccdot%208%29%7D%5Cimplies%20120%2B192%5Cimplies%20312)
Answer:
i deserved these
Step-by-step explanation: