1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qaws [65]
2 years ago
15

Somebody help me please this is algb 1

Mathematics
2 answers:
nevsk [136]2 years ago
7 0

Answer:

x=

2

5

Step-by-step explanation:

Step 1: Simplify both sides of the equation.

−3x+4=2(x+1)

−3x+4=(2)(x)+(2)(1)(Distribute)

−3x+4=2x+2

Step 2: Subtract 2x from both sides.

−3x+4−2x=2x+2−2x

−5x+4=2

Step 3: Subtract 4 from both sides.

−5x+4−4=2−4

−5x=−2

Step 4: Divide both sides by -5.

−5x

−5

=

−2

−5

x=

2

5

Answer:

x=

2

5

timama [110]2 years ago
5 0

Answer:B

Step-by-step explanation:

You might be interested in
Please help i need it
Volgvan

Answer: question 1: 20 question 2: 21 question 3: 17, 19, 23

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
The half life of a certain substance is about 4 hours. The graph shows the decay of a 50 gram sample of the substance that is me
olga55 [171]
I can't see how any of those formulas show exponential decay.  (Did you type those correctly?)

The formula that will show the remaining amount correctly is:
ending amount = Bgng Amount / 2^n
where "n" is the number of haf-lives.

So, for example if half life = 4 hours and if we want to calculate the amount after 9 hours (that's 2.25 half-lives) then:
ending amount = Bgng Amount / 2^n
ending amount = 50 / (2^(9/4))
ending amount = 50 / 2^2.25
ending amount = 50 / <span><span><span>4.75682846 </span>
</span></span><span><span>ending amount = </span> 10.5112 grams
</span>Looking at the graph, we see that's about right.
 

7 0
3 years ago
Read 2 more answers
Check out attachment:) I don't understand how do you find out the length ?? pls help with explanation thx
hjlf

Answer:

x=3.89

Step-by-step explanation:

I'll go in depth for you.

Before we figure out what we do, let understand what we know about this triangle.

  • We know that both triangles have a angle that measure 27°.
  • We also know EH=5
  • FG=9
  • ZG=7
  • We need to know how to find EZ

Notice how line EG and HF intersect at Angle Z. We know that if two lines intersect at an angle, it form angles called vertical angles. This means that the two angles that are vertical to each other are congruent.

This means that angle Z in both triangles both measure the same.

Now since both triangles have 2 congruent corresponding angles, we can say that the <em>Triangles</em><em> </em><em>are</em><em> </em><em>Similar</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>Angle-Angle</em><em> </em><em>Postulate</em><em>.</em>

<em>"</em><em>If</em><em> </em><em>two</em><em> </em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>of</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>congruent</em><em>,</em><em> </em><em>then</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>.</em><em>"</em>

<em>What</em><em> </em><em>is</em><em> </em><em>mean</em><em> </em><em>when</em><em> </em><em>Triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>?</em><em> </em>

<em>It</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>the</em><em> </em><em>similar</em><em> </em><em>triangles</em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>their</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>proportion</em><em>.</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em>

<em>EH</em><em> </em><em>and</em><em> </em><em>GF</em>

<em>EZ</em><em> </em><em>and</em><em> </em><em>ZG</em>

<em>HZ</em><em> </em><em>and</em><em> </em><em>HF</em><em>.</em>

<em>Our</em><em> </em><em>proportion</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>similar</em><em> </em><em>triangle</em><em>s</em><em> </em><em>is</em><em> </em>

<em>Any</em><em> </em><em>two</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>first</em><em> </em><em>triangle</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>must</em><em> </em><em>equal</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>second</em><em> </em><em>triangles</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>respectively</em><em>.</em>

<em>We</em><em> </em><em>know</em><em> </em><em>FG</em><em> </em><em>and</em><em> </em><em>ZG</em><em> </em><em>so</em><em> </em><em>let</em><em> </em><em>set</em><em> </em><em>up</em><em> </em><em>our</em><em> </em><em>first</em><em> </em><em>fraction</em>

<em>\frac{fg}{zg}</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>both</em><em> </em><em>are</em><em> </em>

  • <em>EH</em><em> </em><em>and</em><em> </em><em>EZ</em><em> </em><em>respectively</em><em> </em><em> </em><em>so</em><em> </em><em>our</em><em> </em><em>proportion</em><em> </em><em> </em><em>looks</em><em> </em><em>like</em>
  • <em>\frac{fg}{zg}  =  \frac{eh}{ez}</em>
  • <em>Plug</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>for</em><em> </em><em>each</em><em>.</em><em> </em><em>Let</em><em> </em><em>x</em><em> </em><em>represent</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>EZ</em>
  • <em>\frac{9}{7}  =  \frac{5}{x}</em>
  • <em>Cross</em><em> </em><em>Multiply</em>
  • <em>9x = 35</em>
  • <em>x = 3 \frac{8}{9}  = 3.89</em>
  • <em>So</em><em> </em><em>x</em><em>=</em><em>3</em><em>.</em><em>8</em><em>9</em>
3 0
3 years ago
Miles : 3/5<br> Hours : 1/3<br> _____ miles in 1 hour
Fynjy0 [20]

Answer:

9/5 miles in 1 hour

Step-by-step explanation:

As we are finding here the miles distance in 1 hour so we have to use here the formula which is

Rate = Distance / Time

Rate = 3/5 divided by 1/3

SO using third proportion rule we have to change the Numerator of second fraction with denominator and denominator with numerator  and division sign will be change into Multiplication so this one will be

3/5 x 3/1

9/5 will be the answer

7 0
2 years ago
Decrease £220 by 15%
sasho [114]

220, percentage decreased by 15% (percent) of its value = 187
3 0
3 years ago
Read 2 more answers
Other questions:
  • A jar of jelly that weighs 4.25 Oz cost $2.89 what is the cost of 1 oz of jelly
    10·1 answer
  • What is the
    12·1 answer
  • Which triangles are congruent by AAS?
    10·2 answers
  • Mia enlarged a plan for an outdoor stage. The original plan is shown below. She dilated the outdoor stage by a scale factor of 4
    9·2 answers
  • Francis ran 2 1/2 miles in 7/12 of an hour. How many miles can francis run in one hour?
    11·2 answers
  • A tennis player is standing 12 meters from the base of the net when he hits the ball.the ball passes over the net and lands on t
    9·1 answer
  • A room is 30m long , 24m broad and 18m high. Find (a) Length of the longest rod that can be placed in the room. (b) Its tolal su
    9·1 answer
  • At what age can you start withdrawing money from retirement accounts? What’s the penalty for withdrawing money early from retire
    12·1 answer
  • Help, I have a time limit for this
    7·1 answer
  • Review the following information about vectors q and r.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!