Answer:
Step-by-step explanation:
A linear transformation must satisfy the following properties.
- T(0) = 0.
- For vector a,b then T(a+b) = T(a) + T(b).
- For a vector a and a scalar r, it must happen that T(ra) = rT(a)
In this case we have that T(a,b,c) = (a,0,c).
Note that T(0) = T(0,0,0) = (0,0,0) = 0. So, the first property holds.
Let . Then
So the second property holds.
Finally, let r be a scalar and let . Then
So, the three properties hold, and therefore, T is a linear transformation.