1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
7

Sam the Hummingbird flies at a rate of 2 yards per minute, as modeled by the equation y = 2x. She

Mathematics
1 answer:
daser333 [38]3 years ago
5 0

Answer:

See attachment for plot

Step-by-step explanation:

Given

y =2x

R =+2 --- increment in the rate

First, we need to model the new rate

A linear equation is:

y = mx + b

Where

m = rate

Compare y =2x and y = mx + b. we have:

m =2

The above represents the previous rate.

The new rate:

R =+2

Rewrite as:

R = m+2

R = 2+2

R = 4

So, the model is:

y = Rx

y = 4x

<u>The plot at 1 and 2 minutes</u>

When x = 1

y = 4x = 4 * 1 = 4

When x = 2

y = 4x = 4 * 2 = 8

So, we have:

(x_1,y_1) =(1,4)

(x_2,y_2) =(2,8)

<em>Whether she moves backwards or forward, the distance covered remains the same</em>

<em>See attachment for plot</em>

You might be interested in
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
A train leaves Buffalo traveling west at 60 miles per hour. An hour later, another train leaves Buffalo traveling east at 80 mil
kozerog [31]
The two trains the same distance from Buffalo is 20
8 0
3 years ago
Madison wants to order t-shirts for the university which consists of about 12000 students. she takes a random sample to figure o
earnstyle [38]

Answer:

She should order a total of 5,160 medium sized t-shirts

Step-by-step explanation:

To calculate the number of medium sized t-shirt to be ordered, we shall be using the proportion of students that wanted medium sized t-shirt in her survey to multiply the total number of students that we have.

From the question, we can identify that the probability that a student will like a medium sized t-shirt is simply 129/300

Now we have about 12000 students in the University, using the probability from the survey, the number of medium sized t shirt she should order would be;

129/300 * 12,000 = 129 * 40 = 5,160 medium sized t-shirts

8 0
3 years ago
The ropes on either side of a swing are 1.9 m long. If a child swings through a arc length of 0.9 Determine the angle (in radian
Yuliya22 [10]

Answer:

theta = 9/19 radians or  approximately .4737 radians

Step-by-step explanation:

The formula for arc length is

S = r theta  

where theta is in radians.  Lets put in what we know.  The radius would be 1.9 since the ropes would be the radius.

.9 = 1.9 theta

Divide by 1.9 on each side.

.9/1.9 = theta

theta = 9/19 radians

or in decimal form it is approximately  .4737 radians



7 0
3 years ago
Find ( f - g)(x).<br><br> f (x) = -2x2 - 2x - 3 and g(x) = 3x2 - 4x - 4
Kruka [31]

Answer:

\large\boxed{(f-g)(x)=-5x^2+2x+1}

Step-by-step explanation:

(f-g)(x)=f(x)-g(x)\\\\\text{We have}\ f(x)=-2x^2-2x-3\ \text{and}\ g(x)=3x^2-4x-4.\\\\\text{Substitute:}\\\\(f-g)(x)=(-2x^2-2x-3)-(3x^2-4x-4)\\\\(f-g)(x)=-2x^2-2x-3-3x^2+4x+4\qquad\text{combine like terms}\\\\(f-g)(x)=(-2x^2-3x^2)+(-2x+4x)+(-3+4)\\\\(f-g)(x)=-5x^2+2x+1

3 0
3 years ago
Other questions:
  • Tell whether the sequence is arithmetic. If it is, what is the common difference?
    6·1 answer
  • Help with 3-5 pleaseeeeee !
    8·1 answer
  • Write the opposite of 6
    7·2 answers
  • HELP ASAP WILL GIVE BRAINLIEST
    8·1 answer
  • What is this answer???
    13·1 answer
  • Millions of Americans rely on caffeine to get them up in the morning. Here's nutritional data on some popular
    7·1 answer
  • Help! parallel, perpendicular, or neither?
    15·2 answers
  • Order the numbers from least to greatest. 35.0 135.9 35.0 35.061
    13·2 answers
  • What is 5/6 + 3/4 showing my work.​
    6·2 answers
  • The perimeter of a triangle is 19 cm. If the lengh of the longest side is twice
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!