Answer:
0.982 *
= 3.085 cubic units
Step-by-step explanation:
To find the volume of the solid generated by a region that is bounded by lines where x = 0 , x (b) = 2 we apply the formula given in the attachment below
the required region boundaries are
y = e^-x2 , y = 0 , x = 0, x = b ( b >0)
attached below is a detailed solution of the problem
Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.
Ok, ranked by axis of symmetry
basically x=something is the axis of symmetry
the way to find the axis of symmetry is to convert to vertex form and find h and that's the axis of symmetry
but there's an easier way
for f(x)=ax^2+bx+c
the axis of symmetry is x=-b/2a
nice hack my teacher taught me
so
f(x)=3x^2+0x+0
axis of symmetry is -0/(3*2), so x=0 is the axis of symmetry for f(x)
g(x)=1x^2-4x+5,
axis of symmetry is -(-4)/(2*1)=4/2=2, x=2 is axis of symmetry for g(x)
h(x)=-2x^2+4x+1
axis of symmetry is -4/(2*-2)=-4/-4=1, x=1 is the axis of symmetry for h(x)
0<1<2
axisies
f(x)<h(x)<g(x)
order based on their axises of symmetry is f(x), h(x), g(x)
Answer:
d
Step-by-step explanation:
x<9+7, and x+7>9
solve
x<16
x>2
2<x<16
Answer:
- x- + 10 y- +4
- not proportional
Step-by-step explanation:
i think the 1st one is wrong but hope this helps!