Angle bisector would be the answer
Answer:
a) The value of absolute minimum value = - 0.3536
b) which is attained at
Step-by-step explanation:
<u>Step(i)</u>:-
Given function
...(i)
Differentiating equation (i) with respective to 'x'
...(ii)

Equating Zero






<u><em>Step(ii):</em></u>-
Again Differentiating equation (ii) with respective to 'x'
put


The absolute minimum value at 
<u><em>Step(iii):</em></u>-
The value of absolute minimum value


on calculation we get
The value of absolute minimum value = - 0.3536
<u><em>Final answer</em></u>:-
a) The value of absolute minimum value = - 0.3536
b) which is attained at
Answer:
Number of trucks = 24
Number of SUVs = 24
Step-by-step explanation:
A)
The ratio of cars to trucks is 9:4
The total ratio of cars to trucks is
9+4 = 13
Let x = sum of cars and trucks.
There are 54 cars. Therefore,
x = 54 + t trucks
Number of cars = ratio of cars/ total ratio × sum of cars and trucks. This means,
54 = 9/13 × x
9x / 13 = 54
9x = 13 × 54
9x = 702
x = 702 / 9 = 78
x = 54 + t trucks = number of trucks = 78 = 54 + t trucks
t trucks = 78 - 54 = 24
Number of trucks = 24
B)
The ratio of trucks to SUVs is 12:21
The total ratio of cars to trucks is
12 + 21 = 33
Let y = sum of trucks and SUVs
There are 24 trucks. Therefore,
x = 24 + s SUVs
Number of trucks = ratio of trucks / total ratio × sum of trucks and SUVs. This means,
24 = 12 / 33 × y
12y / 33 = 24
12y = 24 × 33
12y = 792
y = 792 / 12 = 66
y = 24 + s SUVs
66 = 24 + s SUVs
s SUVs = 66 - 24 = 42
Number of SUVs = 24
Answer:
LQ = 54
Median = 69
UQ = 94
Step-by-step explanation:
This list is already sorted for you, so you don't need to worry about that, otherwise you would need to sort the numbers in ascending order. To find the median, we do
, where n is the amount of numbers. This gives us 4, so the median is at position 4, so the median is 69. The lower quartile is simply
, so 2, so the lower quartile is 54. The upper quartile is
, so 6, so the upper quartile is 94.
For this case we have the following equation:
y = 150 * (1.06) ^ t
For the first month we have:
y = 150 * (1.06) ^ 1
y = 159 $
For the second month we have:
y = 150 * (1.06) ^ 2
y = 168.54 $
For the third month we have:
y = 150 * (1.06) ^ 1
y = 178.65 $
Answer:
d. $ 159.00 + $ 168.54 + $ 178.65