1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivolga24 [154]
2 years ago
5

Help!! I think I got these wrong, so please help!! Thank you!

Mathematics
1 answer:
Andrew [12]2 years ago
8 0

Answer:

(x+3)(x+4)(x-4)

x+2 and x-3 are not factors but x-4 is

Step-by-step explanation:

let's factor it :)

x^3 + 3x^2 - 16x -48

first we will factor this:

x^3 + 3x^2

x^2(x + 3)

then factor the second part :

- 16x - 48

-16(x + 3)

so now,

x^2(x + 3) - 16(x + 3)

factor out x+3

(x+3)(x^2 - 16)

factor x^2 - 16

(x+3)(x+4)(x-4)

You might be interested in
HELP PLEASE!!! :( <br> I REALLY NEED HELP ASAP!!<br><br><br> Thank you and stay safe!
Mkey [24]

Answer:

a = 6, b = -2, c = 3

Step-by-step explanation:

6x² - 2x + 3 = 0

a = 6, b = -2, c = 3

6 0
3 years ago
Read 2 more answers
A circle has the order pairs (-1, 2) (0, 1) (-2, -1) what is the equation . Show your work.
olga55 [171]
We know that:

(x-a)^2+(y-b)^2=r^2

is an equation of a circle.

When we substitute x and y (from the pairs we have), we'll get a system of equations:

\begin{cases}(-1-a)^2+(2-b)^2=r^2\\(0-a)^2+(1-b)^2=r^2\\(-2-a)^2+(-1-b)^2=r^2\end{cases}

and all we have to do is solve it for a, b and r.

There will be:

\begin{cases}(-1-a)^2+(2-b)^2=r^2\\(0-a)^2+(1-b)^2=r^2\\(-2-a)^2+(-1-b)^2=r^2\end{cases}\\\\\\&#10;\begin{cases}1+2a+a^2+4-4b+b^2=r^2\\a^2+1-2b+b^2=r^2\\4+4a+a^2+1+2b+b^2=r^2\end{cases}\\\\\\&#10;\begin{cases}a^2+b^2+2a-4b+5=r^2\\a^2+b^2-2b+1=r^2\\a^2+b^2+4a+2b+5=r^2\end{cases}\\\\\\&#10;

From equations (II) and (III) we have:

\begin{cases}a^2+b^2-2b+1=r^2\\a^2+b^2+4a+2b+5=r^2\end{cases}\\--------------(-)\\\\a^2+b^2-2b+1-a^2-b^2-4a-2b-5=r^2-r^2\\\\-4a-4b-4=0\qquad|:(-4)\\\\\boxed{-a-b-1=0}

and from (I) and (II):

\begin{cases}a^2+b^2+2a-4b+5=r^2\\a^2+b^2-2b+1=r^2\end{cases}\\--------------(-)\\\\a^2+b^2+2a-4b+5-a^2-b^2+2b-1=r^2-r^2\\\\2a-2b+4=0\qquad|:2\\\\\boxed{a-b+2=0}

Now we can easly calculate a and b:

\begin{cases}-a-b-1=0\\a-b+2=0\end{cases}\\--------(+)\\\\-a-b-1+a-b+2=0+0\\\\-2b+1=0\\\\-2b=-1\qquad|:(-2)\\\\\boxed{b=\frac{1}{2}}\\\\\\\\a-b+2=0\\\\\\a-\dfrac{1}{2}+2=0\\\\\\a+\dfrac{3}{2}=0\\\\\\\boxed{a=-\frac{3}{2}}

Finally we calculate r^2:

a^2+b^2-2b+1=r^2\\\\\\\left(-\dfrac{3}{2}\right)^2+\left(\dfrac{1}{2}\right)^2-2\cdot\dfrac{1}{2}+1=r^2\\\\\\\dfrac{9}{4}+\dfrac{1}{4}-1+1=r^2\\\\\\\dfrac{10}{4}=r^2\\\\\\\boxed{r^2=\frac{5}{2}}

And the equation of the circle is:

(x-a)^2+(y-b)^2=r^2\\\\\\\left(x-\left(-\dfrac{3}{2}\right)\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{5}{2}\\\\\\\boxed{\left(x+\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{5}{2}}
7 0
3 years ago
What is the square root of 140 in simplest radical form?
Savatey [412]
‾‾‾‾√140≈11.832159566199232
3 0
3 years ago
57; 27; 72; 36; 61; 81; 45 From the numbers above, choose a prime factor​
Mrrafil [7]

Answer:

57

Step-by-step explanation:

3 0
2 years ago
Which of the following is the product of the rational expressions shown below?
Anarel [89]

Answer:

D

Step-by-step explanation:

A P E X

7 0
3 years ago
Other questions:
  • How can we interpret standard deviation using the Empirical Rule?
    5·1 answer
  • 8
    8·1 answer
  • The sum of the digits of a three-digit number is 6. The hundreds digit is twice the units digit, and the tens digit equals to th
    12·1 answer
  • 1. What is the value of x in the equation 4x – 2(x + 3) = 8? (LT 1a)
    13·1 answer
  • A shipping company charges Jim $8.70 for packaging materials plus $1.75 per pound to ship an item. The total charge would be $17
    10·1 answer
  • Which decimal is least a 2.22 ,b 2.02 ,c 2.002 ,d 2.2​
    15·2 answers
  • Which order lists the integers in correct order
    13·1 answer
  • 13^5/13^x=13^4<br> Anyone know how to solve this?
    14·1 answer
  • Write 5.54 million in ordinary form
    10·1 answer
  • The effectiveness of a blood-pressure drug is being investigated. an experimenter finds that, on average, the reduction in systo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!