We write the equation in terms of dy/dx,
<span>y'(x)=sqrt (2y(x)+18)</span>
dy/dx = sqrt(2y + 18)
dy/dx = sqrt(2) ( sqrt(y + 9))
Separating the variables in the equation, we will have:
<span>1/sqrt(y + 9) dy= sqrt(2) dx </span>
Integrating both sides, we will obtain
<span>2sqrt(y+9) = x(sqrt(2)) + c </span>
<span>where c is a constant and can be determined by using the boundary condition given </span>
<span>y(5)=9 : x = 5, y = 9
</span><span>sqrt(9+9) = 5/sqrt(2) + C </span>
<span>C = sqrt(18) - 5/sqrt(2) = sqrt(2) / 2</span>
Substituting to the original equation,
sqrt(y+9) = x/sqrt(2) + sqrt(2) / 2
<span>sqrt(y+9) = (2x + 2) / 2sqrt(2)
</span>
Squaring both sides, we will obtain,
<span>y + 9 = ((2x+2)^2) / 8</span>
y = ((2x+2)^2) / 8 - 9
We need to see the graph in order to help
Answer:
the answer is 23 1/3 or 23 and 1/3 or 23.3 with repeating decimal
Step-by-step explanation:
first find the number that 3 multiplied by a number equals closest to say 70 so 69 leaving 1 amd you use your denominator you divided by and you would have 1/3
Whats the rest of the question?
so what is exactly the question