Answer:
d. Temperature and number of molecules of gas
Step-by-step explanation:
Boyle's Law states, "The volume of a fixed mass of a gas is inversely proportional to the pressure if the temperature remains constant."
Let's examine the words.
"… volume…is inversely proportional to the pressure …" This means that volume and pressure are the <em>variables</em>.
"… fixed mass of a gas …" means that the number of molecules is constant.
"… temperature remains constant" speaks for itself.
a, c, and e are <em>wrong</em>, because pressure is a variable.
b is <em>wrong</em>, because volume is a variable.
The given 2.6 µC of charge is due to a buildup of electrons, each of which has a charge of 1.6 x 10^-19 C. The 2.6 <span>µC is equivalent to 2.6 x 10^-6 C, so we can divide this by the individual charge of an electron:
</span>2.6 x 10^-6 C / 1.6 x 10^-19 (C/electron) = 1.625 x 10^13 electrons
Using ideal gas equation,
P\times V=n\times R\times T
Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=273 K
R=0.0821 atm L mol ⁻¹
Mass of HCl given= 49.8 g
Molar mass of HCl given=36.41
Number of moles of gas, n= \frac{Given mass of the substance}{Molar mass of the substance}
Number of moles of gas, n= \frac{49.8}{36.46}
Number of moles of gas, n= 1.36
Putting all the values in the above equation,
V=\frac{1.36\times 0.0821\times 273}{1}
V=30.6 L
So the volume will be 30.6 L.
The answer is 2 electrons.
The electron configuration of calcium is 2:8:8:2
Calcium has two electrons in its outermost shell. These are its valence electrons and are the ones used in bonding with other elements. Valence electrons of an atom are those electrons that are in its outer energy shell or that are available for bonding.
Calcium is a metal. When metals react with non-metals, electrons are transferred from the metal atoms to the non-metal atoms forming ions. The resulting compound is known as an ionic compound.
For example, when calcium metal reacts with chlorine gas, calcium gives up its two valence electrons and Chlorine accepts them resulting in a new substance called calcium chloride in which the two elements have ended up forming ionic bonds.