Answer: i dont know how exact you want it but the answer is 31.4159265359
Step-by-step explanation: you have to double the raduis and multiple buy pie.
1/sin^2x-1/tan^2x=
1/sin^2x-1/ (sin^2x/cos^2x)<<sin tan= sin/cos>>
= 1/sin^2x- cos^2x / sin^2x
= (1- cos^2x) / sin^2x <<combining into a single fraction>>
sin^2 x / sin^2x <<since 1- cos^2 x sin^2 x
=1
this simplifies to 1.
The answer is <span>√x + √y = √c </span>
<span>=> 1/(2√x) + 1/(2√y) dy/dx = 0 </span>
<span>=> dy/dx = - √y/√x </span>
<span>Let (x', y') be any point on the curve </span>
<span>=> equation of the tangent at that point is </span>
<span>y - y' = - (√y'/√x') (x - x') </span>
<span>x-intercept of this tangent is obtained by plugging y = 0 </span>
<span>=> 0 - y' = - (√y'/√x') (x - x') </span>
<span>=> x = √(x'y') + x' </span>
<span>y-intercept of the tangent is obtained by plugging x = 0 </span>
<span>=> y - y' = - (√y'/√x') (0 - x') </span>
<span>=> y = y' + √(x'y') </span>
<span>Sum of the x and y intercepts </span>
<span>= √(x'y') + x' + y' + √(x'y') </span>
<span>= (√x' + √y')^2 </span>
<span>= (√c)^2 (because (x', y') is on the curve => √x' + √y' = √c) </span>
<span>= c. hope this helps :D</span>
I know some of those really going to mathematics two weeks and all that stuff I’m gonna come bring him right now he’s gonna answer 783