Answer: If the initial term of an arithmetic sequence is a 1 and the common difference of successive members is d, then the nth term of the sequence is given by: a n = a 1 + (n - 1)d The sum of the first n terms S n of an arithmetic sequence is calculated by the following formula: S n = n (a 1 + a n)/2 = n [2a 1 + (n - 1)d]/2
Step-by-step explanation:

9. log(2)=a, log(3)=b, then log(36)=______
log(36) = log(6*6) = log(6) + log(6)
log(36)= log(6) + log(6)
log(36) = log(3*2) + log(3*2)
log(36) = (log(3) + log(2)) + (log(3) + log(2))
log(36) = (a + b) + (b + a)
log(36) = a + b + b + a
log(36) = 2a + 2b
Answer:
A. day 12
Step-by-step explanation:
because that is when both lines meet
brainliest please :)
The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1