Answer:
The answer to your question is V2 = 4.97 l
Explanation:
Data
Volume 1 = V1 = 4.40 L Volume 2 =
Temperature 1 = T1 = 19°C Temperature 2 = T2 = 37°C
Pressure 1 = P1 = 783 mmHg Pressure 2 = 735 mmHg
Process
1.- Convert temperature to °K
T1 = 19 + 273 = 292°K
T2 = 37 + 273 = 310°K
2.- Use the combined gas law to solve this problem
P1V1/T1 = P2V2/T2
-Solve for V2
V2 = P1V1T2 / T1P2
-Substitution
V2 = (783 x 4.40 x 310) / (292 x 735)
-Simplification
V2 = 1068012 / 214620
-Result
V2 = 4.97 l
The answer is (2). To calculate the density, you need to divide the mass with volume. When doing division, the significant figures of result is the minimal of the numbers using before. So the answer is 2.
<u>Answer:</u> The below calculations proves that the rate of diffusion of
is 0.4 % faster than the rate of diffusion of 
<u>Explanation:</u>
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

We are given:
Molar mass of 
Molar mass of 
By taking their ratio, we get:


From the above relation, it is clear that rate of effusion of
is faster than 
Difference in the rate of both the gases, 
To calculate the percentage increase in the rate, we use the equation:

Putting values in above equation, we get:

The above calculations proves that the rate of diffusion of
is 0.4 % faster than the rate of diffusion of 