Answer:
gas
Explanation:
The gas molecules are far apart and as such, when heated they gain more kinetic energy thereby colliding with one another and with the wall of the container thereby exerting pressure and also they can be compressed by reducing the distance between between the molecules.
Explanation:
It is known that in 1 mole there are
atoms or molecules.
It is given that there are
carbon molecules. Therefore, calculate the moles as follows.
Number of moles = 
= 1.196 mol
Thus, we can conclude that there are 1.196 mol in
carbon molecules.
Answer:
2RbNO₃ + BeF₂ → Be(NO₃)₂ + 2RbF, because Be keeps a 2+ charge throughout the reaction
Explanation:
2RbNO₃ + BeF₂ → Be(NO₃)₂ + 2RbF, because Be keeps a 2+ charge throughout the reaction
Rb is a +1 cation, NO3 is a -1 anion, Be is a +2 cation and F is a -1 anion.
In writing an ionic compound the charge of the cation becomes the subscript of the anion and the charge of the anion becomes the subscript of the cation.
So the ionic compound formed between Be2+ and F- is BeF2. The ionic compound formed between Be2+ and NO3- is Be(NO₃)₂.
As there are two NO₃ on the product side it is balanced by writing a 2 coefficient before RbNO₃ on the reactant side.
And as there are two F on the reactant side it is balanced by writing a 2 coefficient before RbF on the product side.
Answer:
<h2>1.8662 × 10²⁴ atoms</h2>
Explanation:
The number of atoms can be found by using the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
We have
N = 3.1 × 6.02 × 10²³
We have the final answer as
<h3>1.8662 × 10²⁴ atoms</h3>
Hope this helps you