let's firstly convert the mixed fractions to improper fractions and then proceed.
![\stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}}~\hfill \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\begin{array}{ccll} miles&hours\\ \cline{1-2} \frac{9}{2}&\frac{5}{4}\\[1em] x&1 \end{array}\implies \cfrac{~~ \frac{9}{2}~~}{x}=\cfrac{~~ \frac{5}{4}~~}{1}\implies \cfrac{~~ \frac{9}{2}~~}{\frac{x}{1}}=\cfrac{5}{4}\implies \cfrac{9}{2}\cdot \cfrac{1}{x}=\cfrac{5}{4} \\\\\\ \cfrac{9}{2x}=\cfrac{5}{4}\implies 36=10x\implies \cfrac{36}{10}=x\implies \cfrac{18}{5}=x\implies 3\frac{3}{5}=x](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bccll%7D%20miles%26hours%5C%5C%20%5Ccline%7B1-2%7D%20%5Cfrac%7B9%7D%7B2%7D%26%5Cfrac%7B5%7D%7B4%7D%5C%5C%5B1em%5D%20x%261%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7Bx%7D%3D%5Ccfrac%7B~~%20%5Cfrac%7B5%7D%7B4%7D~~%7D%7B1%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7B%5Cfrac%7Bx%7D%7B1%7D%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B9%7D%7B2%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bx%7D%3D%5Ccfrac%7B5%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B9%7D%7B2x%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%2036%3D10x%5Cimplies%20%5Ccfrac%7B36%7D%7B10%7D%3Dx%5Cimplies%20%5Ccfrac%7B18%7D%7B5%7D%3Dx%5Cimplies%203%5Cfrac%7B3%7D%7B5%7D%3Dx)
Answer:
the y intercept is 8.54 and the slope would be 0
Step-by-step explanation:
use to do these
Answer:
9c + 45
Step-by-step explanation:
The distributive property also known as distributive law of multiplication and division.
In the given expression, distributive law of multiplication is applied where we can multiply first before addition.
Given
9(c+5)
Using distributive property
9(c+5)
= (9 × c) + (9 × 5)
= 9c + 45
9(c+5) = 9c + 45
Answer:
BE is congruent to ED
Step-by-step explanation: