Answer:
I might be wrong but I think the answered would be 14
Step-by-step explanation:
5+5=10+3=13+1=14
<h3><u>Correct Questions :- </u></h3>
Find the values of P for which the quadratic equation 4x²+px+3=0 , provided that roots are equal or discriminant is zero .
<h3><u>Solution</u>:- </h3>
Let us Consider a quadratic equation αx² + βx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.
For equal roots

So,

Here,
Now,







Thus, the values of P for which the quadratic equation 4x²+px+3=0 are-
4√3 and -4√3.
<span> we have that
standard form of equation for parabola:
(x-h)^2=-4p(y-k)
(h,k) --------->being the (x,y) coordinates of the vertex.
Parabola opens downwards because focus is below vertex on the axis of symmetry.
For given problem:
</span><span>vertex: (-3,2)
axis of symmetry: x=-3
p=distance from vertex to focus on the axis of symmetry=2-(-1)=3
4p=12
Directrix: y=2+p=5
Equation:
(x+3)^2=-12(y-2)
the answer is </span>(x+3)^2=-12(y-2)
Answer:
R L Q
Step-by-step explanation:
Im pretty sure thats right sorry if Its not