Answer:
19.74% of temperatures are between 12.9°C and 14.9°C
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What proportion of temperatures are between 12.9°C and 14.9°C?
This is the pvalue of Z when X = 14.9 subtracted by the pvalue of Z when X = 12.9.
X = 14.9



has a pvalue of 0.2420
X = 12.9



has a pvalue of 0.0446
0.2420 - 0.0446 = 0.1974
19.74% of temperatures are between 12.9°C and 14.9°C
Answer:
length= 7in
width= 2in
Step-by-step explanation:
7*2=14 which is the area
7-2= 5 which is the difference of inches between the length and width
Answer:
162 is 65.587044534413% of 247
rounded its 66%
Step-by-step explanation:
Answer:
1ST GRAPH
Step-by-step explanation:
1st GRAPH
Because the equation is trying to express:
<u>p is bigger or equal to -1</u>
and in graph no.1 the inequality is at -1 and everything after it could be p. As P is bigger than -1
3.5(2h+4.5)=57.75
7h+15.75=57.75
7h=57.75-15.75
7h=42
h=42/7
h=6