Answer:
5.66 × 10⁻²³ m/s
Explanation:
If i assume i can jump as high as h = 2 m, my initial velocity is gotten from v² = u² + 2gh. Since my final velocity v = 0, u = √2gh = √(2 × 9.8 × 2) = √39.2 m/s = 6.26 m/s.
Since initial momentum = final momentum,
mv₁ + MV₁ = mv₂ + MV₂ where m, M, v₁, V₁, v₂ and V₂ are my mass, mass of earth, my initial velocity, earth's initial velocity, my final velocity and earth's final velocity respectively.
My mass m = 54 kg, M = 5.972 × 10²⁴ kg, v₁ = 6.26 m/s, V₁ = 0, v₂ = 0 and V₂ = ?
So mv₁ + M × 0 = m × 0 + MV₂
mv₁ = MV₂
V₂ = mv₁/M = 54kg × 6.26 m/s/5.972 × 10²⁴ kg = 338.093/5.972 × 10²⁴ = 56.61 × 10⁻²⁴ m/s = 5.661 × 10⁻²³ m/s ≅ 5.66 × 10⁻²³ m/s
Given :
A box weighing 12,000 N is parked on a 36° slope.
To Find :
What will be the component of the weight parallel to the plane that balances friction.
Solution :
The component of that will be parallel to the plane to balance friction is :

Therefore, component of force to balance friction is F sin 36° .
Hence, this is the required solution.
The answer is C. the earths mantle because the wood in this case is the surface
Answer:
The time is 106.7 minute.
Explanation:
Given that,
Density 
Current 
Diameter of wire = 1.2 mm
Length = 31 cm
We need to calculate the drift velocity
Using formula of drift velocity


Put the value into the formula


We need to calculate the time
Using formula for time


Where, l = length
= drift velocity
Put the value into the formula



Hence, The time is 106.7 minute.