Answer:
the nth term of the sequence is 
Step-by-step explanation:
Given : An arithmetic sequence begins as follows: 
To find : Which of the following gives the definition of its nth term?
Solution :
The nth term of the A.P is 
The first term is 
The common difference is 

Substitute in the formula,



Therefore, the nth term of the sequence is 
The larger fractron will be the fraction with the greater numerator.
ex. 4/5 is greater than 2/5
Answer:
The roots of the polynomial equation in this case would be the intersection of the 2 polynomial functions. which are at x = 4 and x = -3
Step-by-step explanation:
The roots are found by finding the x-values of the intersections of these two cubic polynomial functions.
We could try solving algebraically, but you have the graph.
A complex fraction is. Fraction at a whole number
Answer: 2343 / 256
Explanation
I will do this for you in two forms: 1) adding each term, and 2) using the general formula for the sum of geometric series.
1) Adding the terms:
4
∑ 3 (3/4)^i = 3 (3/4)^0 + 3 (3/4)^1 + 3 (3/4)^2 + 3 (3/4)^3 + 3 (3/4)^4
i=0
= 3 + 9/4 + 27/16 + 81/64 + 243/256 = [256*3 + 27*16 + 64*9 + 4*81 + 243] / 256 =
= 2343 / 256
2) Using the formula:
n-1
∑ A (r^i) = A [1 - r^(n) ] / [ 1 - r]
i=0
Here n - 1 = 4 => n = 5
r = 3/4
A = 3
Therefore the sum is 3 [ 1 - (3/4)^5 ] / [ 1 - (3/4) ] =
= 3 [ 1 - (3^5) / (4^5) ] / [ 1/4 ] = 3 { [ (4^5) - (3^5) ] / (4^5) } / {1/4} =
= (3 * 781) / (4^5) / (1/4) = 3 * 781 / (4^4) = 2343 / 256
So, no doubt, the answer is 2343 / 256