Answer:
Step-by-step explanation:
I think you have the question incomplete, and that this is the complete question
sin^4a + cos^4a = 1 - 2sin^2a.cos^2a
To do this, we can start my mirroring the equation.
x² + y² = (x + y)² - 2xy,
This helps us break down the power from 4 to 2, so that we have
(sin²a)² + (cos²a)² = (sin²a + cos²a) ² - 2(sin²a) (cos²a)
Recall from identity that
Sin²Φ + cos²Φ = 1, so therefore
(sin²a)² + (cos²a)² = 1² - 2(sin²a) (cos²a)
On expanding the power and the brackets, we find that we have the equation proved.
sin^4a + cos^4a = 1 - 2sin^2a.cos^2a
Answer:
3x²-29x+4
Step-by-step explanation:
3x²-x-4=-30x
0=-30x-3x²+x+4
0=-3x²-29x+4
Answer:
The answer is (d) ⇒ cscx = √3
Step-by-step explanation:
∵ sinx + (cotx)(cosx) = √3
∵ sinx + (cosx/sinx)(cosx) = √3
∴ sinx + cos²x/sinx = √3
∵ cos²x = 1 - sin²x
∴ sinx + (1 - sin²x)/sinx = √3 ⇒ make L.C.M
∴ (sin²x + 1 - sin²x)/sinx = √3
∴ 1/sinx = √3
∵ 1/sinx = cscx
∴ cscx = √3
Answer:3600 Step-by-step explanation:
The increments are not the same, therefore the graph shows misleading data, you could fix it by changing the increments of the x variable on the x axis to 1 so it shows accurate data