Answer: 24.2° SouthWest
<u>Step-by-step explanation:</u>
First step: DRAW A PICTURE of the vectors from head to tail <em>(see image)</em>
I created a perpendicular from the resultant vector to the vertex of the given vectors so I could use Pythagorean Theorem to find the length of the perpendicular. Then I used that value to find the angle of the plane.
<u>Perpendicular (x):</u>
cos 35° = adjacent/hypotenuse
cos 35° = x/160
→ x = 160 cos 35°
<u>Angle (θ):</u>
sin θ = opposite/hypotenuse
sin θ = x/320
sin θ = 160 cos 35°/320
θ = arcsin (160 cos 35°/320)
θ = 24.2°
Direction is down (south) and left (west)
Answer:
lw +
× π ×
⇒ Answer D is correct
Step-by-step explanation:
First, let us find the area of the semi-circle.
Area =
× π × r²
<u>Given that,</u>
diameter of the semi-circle is ⇒ <em>l</em>
∴ radius ⇒ <em>l / 2</em>
<u>Let us find it now.</u>
Area =
× π × r²
Area =
× π × 
<u> </u>
Secondly, let us find the area of the rectangle.
Area = length × width
<u>Given that,</u>
length ⇒ <em>l</em>
width ⇒ w
<u>Let us find it now.</u>
Area = length × width
Area = l ×w
Area = lw
<u> </u>
And now let us <u>find the total area.</u>
Total area = Area of the rectangle + Area of the semi - circle
Tota area = lw +
× π × 
Answer:
f(-5) = 4(-5) + 1 = -20 + 1 = -19
f(-1) = 4(-1) + 1 = -4 + 1 = -3
f(2) = 4(2) + 1 = 8 + 1 = 9
f(3) = 4(3) + 1 = 12 + 1 = 13
f(5) = 4(5) + 1 = 20 + 1 = 21
Given the equation - x² + 5x = 3, which can be rewritten as:
- x² + 5x - 3 = 0
where a = -1, b = 5 and c = -3.
Quadratic formula:
![\frac{-b\text{ }\pm\text{ }\sqrt[]{b^2\text{ - 4ac}}}{2a}](https://tex.z-dn.net/?f=%5Cfrac%7B-b%5Ctext%7B%20%7D%5Cpm%5Ctext%7B%20%7D%5Csqrt%5B%5D%7Bb%5E2%5Ctext%7B%20-%204ac%7D%7D%7D%7B2a%7D)
Now, we just replace the values of a, b and c on the equation above.
![\frac{-5\text{ }\pm\text{ }\sqrt[]{5^2\text{ - 4(-1)(3)}}}{2(-1)}](https://tex.z-dn.net/?f=%5Cfrac%7B-5%5Ctext%7B%20%7D%5Cpm%5Ctext%7B%20%7D%5Csqrt%5B%5D%7B5%5E2%5Ctext%7B%20-%204%28-1%29%283%29%7D%7D%7D%7B2%28-1%29%7D)
=
Answer:
- 16
Step-by-step explanation:
Evaluate f(2) by substituting x = 2 into f(x) , that is
f(2) = 3(2) - 3 = 6 - 3 = 3
Evaluate g(- 1) by substituting x = - 1 into g(x) , that is
g(- 1) = 8 - (- 1)² = 8 - 1 = 7
Thus
4f(2) - 4g(- 1)
= 4(3) - 4(7)
= 12 - 28
= - 16