Answer:
53.13⁰
Step-by-step explanation:
Use sine:
sinθ=opposite/hypotenuse
sin∠A=4/5
∠A=sin⁻¹(0.8)=53.13010235415≈53.13⁰
Answer: Morgan make (66) 2point baskets.
Explanation:
It is given that during the basketball season, morgan made 3 times as many 2 point baskets as she made 3 point baskets and free throws combined.
Let the number of 2point basket be x, the number of 3point basket be y and the number of free throws be z.

If she made 14 free throws and eight 3point baskets, then the number of 2point did she make is,



Therefore, the number of 2point baskets make by morgan is 66.
Answer:
The volume of the cone is 100.48 units³ approximately
Step-by-step explanation:
To find the volume of a cone with a diameter of 8 unit and height of 6 units, we will follow the steps below;
first, write down the formula for calculating the volume of a cone
v= πr²
where v is the volume of the cone
r is the radius and h is the height of the cone
from the question given, diameter d = 8 units but d=2r which implies r=d/2
r=8/2 = 4 units
Hence r= 4 units
height = 6 units
π is a constant and is ≈ 3.14
we can now proceed to insert the values into the formula
v= πr²
v ≈ 3.14 × 4² × 6/3
v ≈ 3.14 × 16 × 2
v ≈ 100 .48 units³
Therefore the volume of the cone is 100 .48 units³ approximately
Answer:Given:
P(A)=1/400
P(B|A)=9/10
P(B|~A)=1/10
By the law of complements,
P(~A)=1-P(A)=399/400
By the law of total probability,
P(B)=P(B|A)*P(A)+P(B|A)*P(~A)
=(9/10)*(1/400)+(1/10)*(399/400)
=51/500
Note: get used to working in fraction when doing probability.
(a) Find P(A|B):
By Baye's Theorem,
P(A|B)
=P(B|A)*P(A)/P(B)
=(9/10)*(1/400)/(51/500)
=3/136
(b) Find P(~A|~B)
We know that
P(~A)=1-P(A)=399/400
P(~B)=1-P(B)=133/136
P(A∩B)
=P(B|A)*P(A) [def. of cond. prob.]
=9/10*(1/400)
=9/4000
P(A∪B)
=P(A)+P(B)-P(A∩B)
=1/400+51/500-9/4000
=409/4000
P(~A|~B)
=P(~A∩~B)/P(~B)
=P(~A∪B)/P(~B)
=(1-P(A∪B)/(1-P(B)) [ law of complements ]
=(3591/4000) ÷ (449/500)
=3591/3592
The results can be easily verified using a contingency table for a random sample of 4000 persons (assuming outcomes correspond exactly to probability):
===....B...~B...TOT
..A . 9 . . 1 . . 10
.~A .399 .3591 . 3990
Tot .408 .3592 . 4000
So P(A|B)=9/408=3/136
P(~A|~B)=3591/3592
As before.
Step-by-step explanation: its were the answer is