if the diameter of a circle is 15, its radius is half that or 7.5.
![\bf \textit{area of a circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=7.5 \end{cases} A=\pi (7.5)^2\implies A=56.25\pi \implies \stackrel{\pi =3.14}{A=176.625}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D7.5%20%5Cend%7Bcases%7D%20A%3D%5Cpi%20%287.5%29%5E2%5Cimplies%20A%3D56.25%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7BA%3D176.625%7D%20)
9.1/3575
use long division like this
_<u>0.</u>_________
3575|91.000000
we find how many of 3575 fit into the 91
it's too big so we go farther
how many 3575 go into 910
too big so we go farther
how many 3575 go into 9100
the answer is 2 so put that in the correct place and mulitply that and put that in the correct place. then we subtract
_<u>0.</u><u>02</u>_________
3575|91.000000
-<u>71.50</u>
19.50
bring down the next number
find how many go into 19.500
the answe ris 5
_<u>0.</u><u>02</u><u>5</u>_________
3575|91.000000
-<u>71.50</u>
19.500
-<u>17.875</u>
1.625
bring down he next zero ( I fast forward and skip steps for convinience)
__
_<u>0.</u><u>02</u><u>5</u><u>455</u>_________
3575|91.000000
-<u>71.50</u>
19.500
-<u>17.875</u>
1.6250
-<u>1.4300</u>
.19500
-<u>.17875
</u> 16250
-14300
and so on untill infinity so the answe ris 0.0254555555555555 (enless fives)
(9√25) /√50 = 9*5/√50 now simplify the denominator. √50=√25*√2=5√2
so (9*5)/(5√2) simplifies to 9/√2. To rationalize the denominator multiply both the numerator and the denominator by √2.
9√2/(√2*√2) = 9√2/2
Answer:
A is the answer i believe
Step-by-step explanation:
Answer:
angle 1 = 83°
angle 2 = 88°
Step-by-step explanation:
angle 1 and angle on vertex B are
pair of co interior angles ( whose sum = 180° )
so, angle 1 + angle B = 180°
angle 1 = 180° - angle B
angle 1 = 180° - 97° = 83°
hence, angle 1 = 83°
but, angle 2 and exterior of vertex A forms alternate interior angle pair ,
so , angle 2 = angle A = 88°
i hope you got it ....