No, it's not possible for the sides of a triangle to have those lengths.
According to the triangle inequality theorem, the sum of any two sides of the triangle has to be bigger than the last side. Let's test this.

This inequality satisfies the triangle inequality theorem.

This also satisfies the theorem.

Uh oh. This does not satisfy the triangle inequality theorem. Thus, it is not possible for a triangle to have these side lengths.
The answers is A= C/-13
C= 13A
9514 1404 393
Answer:
11
Step-by-step explanation:
The future value of the account is given by the formula ...
A = P(1 +r/12)^(12t) . . . . principal P invested at rate r for t years
Solving for t, we find ...
A/P = (1 +r/12)^(12t) . . . . . . . . . . . divide by P
log(A/P) = 12t·log(1 +r/12) . . . . . . take logs
Divide by the coefficient of t, then fill in the numbers.
t = log(A/P)/(12·log(1 +r/12)) = log(202800/93000)/(12·log(1 +.068/12))
t ≈ 11.497
It will take about 11 years for the account balance to reach the desired amount.
Hi there!

To find the indefinite integral, we must integrate by parts.
Let "u" be the expression most easily differentiated, and "dv" the remaining expression. Take the derivative of "u" and the integral of "dv":
u = 4x
du = 4
dv = cos(2 - 3x)
v = 1/3sin(2 - 3x)
Write into the format:
∫udv = uv - ∫vdu
Thus, utilize the solved for expressions above:
4x · (-1/3sin(2 - 3x)) -∫ 4(1/3sin(2 - 3x))dx
Simplify:
-4x/3 sin(2 - 3x) - ∫ 4/3sin(2 - 3x)dx
Integrate the integral:
∫4/3(sin(2 - 3x)dx
u = 2 - 3x
du = -3dx ⇒ -1/3du = dx
-1/3∫ 4/3(sin(2 - 3x)dx ⇒ -4/9cos(2 - 3x) + C
Combine:

Answer:
67796.61
Step-by-step explanation: