A complex chemistry is most related to maintaining a stable internal environment.
Your answer can be found on quizlet, Brainly won’t let me comment the answer. Just copy+paste :)
<span>If a population is not in Hardy-Weinberg equilibrium that can cause deviations from expectation depending on the assumptions of HW that are violated. If a population violates some of the assumptions (like mutations, migrations and selection) the allele frequencies will change over time. Also, if a non-random mating occurs (like inbreeding), it will cause an increase in homozygosity for all genes.</span>
Answer:
Greenhouse gases from human activities are the most significant driver of observed climate change since the mid-20th century.1 The indicators in this chapter characterize emissions of the major greenhouse gases resulting from human activities, the concentrations of these gases in the atmosphere, and how emissions and concentrations have changed over time. When comparing emissions of different gases, these indicators use a concept called “global warming potential” to convert amounts of other gases into carbon dioxide equivalents.
Explanation:
Why does it matter?
As greenhouse gas emissions from human activities increase, they build up in the atmosphere and warm the climate, leading to many other changes around the world—in the atmosphere, on land, and in the oceans. The indicators in other chapters of this report illustrate many of these changes, which have both positive and negative effects on people, society, and the environment—including plants and animals. Because many of the major greenhouse gases stay in the atmosphere for tens to hundreds of years after being released, their warming effects on the climate persist over a long time and can therefore affect both present and future generations.
The phrase that best describe the word "energy" is letter "C. the ability to do work". The unit most commonly used to express energy is Joules (J) which is also derived from the equation of work which is the product of force and the distance that a body moves parallel to the force applied.