Answer: the number of the parking space covered by the car is 87
Step-by-step explanation:
Numbers are assigned to each parking spot. Looking closely at the numbers assigned to each spot, the numbers are inverted and the number on each successive spot differ by one. The numbers are 86, 87, 88, 89, 90, 91
Therefore, the number assigned to the spot where the car would be 87
The sum of the interior angles of a polygon is (n-2)*180, n being the number of sides.
a nonagon has nine sides, so the total of interior angles is (9-2)*180=7*180
this is a regular nonagon, so each interior angle has the same degrees:
7*180/9=7*20=140
the exterior angle=180-the interior angle=180-140=40
40 is the correct answer.
Answer:
Slope = -2/2 = -1
x-intercept = 6/1 = 6
y-intercept = 6/1 = 6
I wasn't sure what you really were asking for, so I did slope, x, and y.
Answer: x = 15, ∠K = 45.7°, ∠L = 45.7°, ∠M = 88.6°
<u>Step-by-step explanation:</u>
Since ∠K ≅ ∠L, then ΔKLM is an isoceles triangle with base KL
KM ≅ LM
3x + 23 = 7x - 37
23 = 4x - 37
60 = 4x
15 = x
KM = LM = 3x + 23
= 3(15) + 23
= 45 + 23
= 68
KL = 9x - 40
= 9(15) - 40
= 135 - 40
= 95
Next, draw a perpendicular bisector KN from K to KL. Thus, N is the midpoint of KL and ΔMNL is a right triangle.
- Since N is the midpoint of KL and KL = 95, then NL = 47.5
- Since ∠N is 90°, then NL is adjacent to ∠l and ML is the hypotenuse
Use trig to solve for ∠L (which equals ∠K):
cos ∠L = 
cos ∠L = 
∠L = cos⁻¹ 
∠L = 45.7
Triangle sum Theorem:
∠K + ∠L + ∠M = 180°
45.7 + 45.7 + ∠M = 180
91.4 + ∠M = 180
∠M = 88.6
Answer:
Below!
Explanation:
A system of equations with infinite solutions defines that both the equations are identical and are overlapping when the lines are graphed. An example could be y = 5x + 9 and y = 5x + 9. These sets of equations have infinite solutions because they are the same and when graphed, they overlap.
Hoped this helped!