Answer: 
<u>Step-by-step explanation:</u>
Convert everything to "sin" and "cos" and then cancel out the common factors.
![\dfrac{cot(x)+csc(x)}{sin(x)+tan(x)}\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)}{1}+\dfrac{sin(x)}{cos(x)}\bigg)\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg[\dfrac{sin(x)}{1}\bigg(\dfrac{cos(x)}{cos(x)}\bigg)+\dfrac{sin(x)}{cos(x)}\bigg]\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)cos(x)}{cos(x)}+\dfrac{sin(x)}{cos(x)}\bigg)](https://tex.z-dn.net/?f=%5Cdfrac%7Bcot%28x%29%2Bcsc%28x%29%7D%7Bsin%28x%29%2Btan%28x%29%7D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%5B%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%5D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29cos%28x%29%7D%7Bcos%28x%29%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29)


Answer:
The answer is C/85,000
Step-by-step explanation:
For this case we have the following system of equations:

We multiply the first equation by -5:

Thus, we have the equivalent system:

We add the equations:

We find the value of the variable "x":

Thus, the solution of the system is:

Answer:

Answer:
EF = 11
Step-by-step explanation:
AD/DE = 3
Therefore, DC/3 = EF
33/3 = 11
Answer:
4 chocolates
Step-by-step explanation:
Before Luke started eating, there were 8. This is 2/3 of what Sara had to start with, so she started with 12. That is 3/4 of what Mike started with, so he started with 16.
Jill left 4/5 of what she started with, so she must have started with 20. Jake ate 1/6 and left 5/6, so 20 is 5 times the number Jake ate.
Jake ate 4 chocolates.
___
Jill ate 4; Mike ate 4; Sara ate 4; and Luke ate 4.