Answer:

Step-by-step explanation:
Consider f(x)=sinx
We need to find the period of f(x)
We know that the period of sinax is 
Here f(x)=sinx⇒a=1
Therefore period of the function f(x)=sinx is 2π
0.0002077 because it’s to the negative power
Answer:
decrease by 5
Step-by-step explanation:
n= 10
then in sequence,
n= n-5
1) x^2=36
x=6
3) x^2-8x+13=0 —> x= (8±√64-4(1)(13))/2(1)
x=4±√3
5) x^2-6x+9-k=0 —> x=(6±√36-4(1)(9-k))/2(1) —> (6±√4k)/2 —> (6±2√k)/2
x=3±√k
7) y=x^2-4x+11 —> y-11=x^2-4x —> take the half of the coefficient of the single x term and square it and add it on both sides —> y-11+4=x^2-4x+4 —> y-7=(x-2)^2 —> y=(x-2)^2+7
Minimum: (2,7)
Maximum: n/a
X intercepts: none (never crosses the x-intercept)
9) y=x^2+2x-8 —> y+8+1=x^2+2x+1 —> y=(x+1)^2-9
Minimum: (-1,-9)
Maximum: n/a
x-intercepts: (x+4)(x-2) —> (-4,0),(2,0)
11) c
13) (x+7)(x+3)
15) x=(-6±√36-4(1)(10))/2 —> x=(-6±√-4)/2 —> (-6±2i)/2
x=-3±i OR no real solutions
Answer:
292
Step-by-step explanation: